Abrykosov, P.; Murböck, M.; Pail, R.; Dahle, C.: Data-driven multi-step self-de-aliasing approach for single- and double-pair mission scenarios. ESA Living Planet Symposium, 2022
Abrykosov, P.; Pail, R.: Enhanced Near-real Time Gravity Field Retrieval for NGGM. Gravity Geoid and Height Systems 2022 Symposium - GGHS2022, 2022
Abrykosov, P.; Pail, R.: Enhanced near-real time gravity field retrieval for NGGM. 2022 GRACE-FO Science Team Meeting, 2022
Abrykosov, P.; Sulzbach, R.; Pail, R.; Dobslaw, H.; Thomas, M.: Treatment of Ocean Tide Background Model Errors in the Context of GRACE/GRACE-FO Data Processing. Gravity Geoid and Height Systems 2022 Symposium - GGHS2022, 2022
Abrykosov, P.; Sulzbach, R.; Pail, R.; Dobslaw, H.; Thomas, M.: Treatment of ocean tide background model errors in the context of GRACE/GRACE-FO data processing. 2022 GRACE-FO Science Team Meeting, 2022
Heller, B.; Abrykosov, P.; Pail, R.: Simulations of low-low satellite-to-satellite tracking constellations for the ESA/NASA MAGIC satellite gravity mission. ESA Living Planet Symposium, 2022
Heller-Kaikov, B.; Pail, R.; Abrykosov, P.: Closed-loop Simulations for the Magic Satellite Gravity Mission. Gravity Geoid and Height Systems 2022 Symposium - GGHS2022, 2022
Pail, R.; Flechtner, F.; Bruinsma, S.; Visser, P.; Güntner, A.; Abrykosov, P.; Heller, B.: Scientific simulation studies for a Mass change And Geosciences International Constellation (MAGIC). ESA Living Planet Symposium, 2022
Pail, R.; Flechtner, F.; Bruinsma, S.; Visser, P.; Güntner, A.; Abrykosov, P.; Heller-Kaikov, B.: Final Results of Scientific Simulation Studies for a Mass Change and Geosciences International Constellation (MAGIC). Gravity Geoid and Height Systems 2022 Symposium - GGHS2022, 2022
Pail, R.; Wiese, D.; Flechtner, F.; Bettadpur, S.; Visser, P.; Loomis, B.; Luthcke, S.: ESA/NASA science support studies to MAGIC mission. ESA Living Planet Symposium, 2022
Schlaak, M., Pail, R.: Applying Selected Parameter Models to Current and Next-Generation Satellite Gravity Mission Simulations to Retrieve Climate-Related Mass Transport Long-Term Trend. Gravity Geoid and Height Systems 2022 Symposium - GGHS2022, 2022
Schlaak, M.; Pail, R.; Eicker, A.: Closed Loop Simulations Evaluating the Resolvability of Climate-Related Mass Transport Signal in Current and Next-Generation Satellite Gravity Missions. 2022 GRACE-FO Science Team Meeting, 2022
Schlaak, M.; Pail, R.; Jensen, L.; Eicker, A.: Recoverability of Climate-Related Mass Transport Signals in Cur-rent and Next-Generation Satellite Gravity Missions. ESA Living Planet Symposium, 2022
Schlaak, M.; Pail, R.; Jensen, L.; Eicker, A.: Closed Loop Simulations on Recoverability of Climate-Related Mass Transport Signals in Current and Next-Generation Satellite Gravity Missions. European Geosciences Union General Assembly, 2022
Schlaak, M.; Pail, R.; Jensen, L.; Eicker, A.: Related Mass Transport Long-Term Trend Comparing Current and Next-Generation Satellite Gravity Mission Observations. Gravity Geoid and Height Systems 2022 Symposium - GGHS2022, 2022
Abrykosov, P.; Pail, R.; Heller, B.: Sensitivity analysis on inter-satellite distance. 2021 GRACE-FO Science Team Meeting, 2021
Abrykosov, P.; Sulzbach, R.; Pail, R.: Treatment of ocean tide background model errors in GRACE/GRACE-FO data processing. Scientific Assembly of the International Association of Geodesy, 2021
Heller, B.; Abrykosov, P.; Pail, R.: Closed-Loop Gravity Simulations in the Framework of the Mass change And Geosciences International Constellation (MAGIC) Mission Concept. 2021 GRACE-FO Science Team Meeting, 2021
Heller, B.; Siegismund, F.; Pail, R.; Gruber, T.; Haagmans, R.: Time-variable Gravity Signals in Reprocessed GOCE Gradient Data. Scientific Assembly of the International Association of Geodesy, 2021
Murböck, M.; Abrykosov, P.; Dahle, C.; Flechtner, F.; Pail, P.: Data-Driven Self-De-Aliasing approach for monthly GRACE and GRACE-FO gravity retrieval. Scientific Assembly of the International Association of Geodesy, 2021
Murböck, M.; Abrykosov, P.; Dahle, C.; Flechtner, F.; Pail, R.: Data-driven self-dealiasing approach for monthly GRACE and GRACE-FO gravity retrieval. 2021 GRACE-FO Science Team Meeting, 2021
Pail, R.: Future Gravity Mission Concepts for Sustained Observation of Mass Transport in the Earth System. European Geosciences Union General Assembly, 2021
Pail, R.; Flechtner, F.; Bruinsma, S.; Visser, P.; Güntner, A.: Simulation studies for a Mass change And Geosciences International Constellation (MAGIC) – An ESA/NASA joint mission concept in preparation. Scientific Assembly of the International Association of Geodesy, 2021
Pail, R.; Flechtner, F.; Bruinsma, S.; Visser, P.; Güntner, A.; Abrykosov, P.; Heller, B.: Scientific simulation studies for a Mass change And Geosciences International Constellation (MAGIC). 2021 GRACE-FO Science Team Meeting, 2021
Publications
Abrykosov, Petro; Murböck, Michael; Hauk, Markus; Pail, Roland; Flechtner, Frank: Data-driven multi-step self-de-aliasing approach for GRACE and GRACE-FO data processing. Geophysical Journal International 232 (2), 2022, 1006-1030 https://doi.org/10.1093/gji/ggac340
Schlaak, M; Pail, R; Jensen, L; Eicker, A: Closed loop simulations on recoverability of climate trends in next generation gravity missions. Geophysical Journal International 232 (2), 2022, 1083-1098 https://doi.org/10.1093/gji/ggac373
Abrykosov, Petro; Sulzbach, Roman; Pail, Roland; Dobslaw, Henryk; Thomas, Maik: Treatment of ocean tide background model errors in the context of GRACE/GRACE-FO data processing. Geophysical Journal International 228 (3), 2021, 1850-1865 https://doi.org/10.1093/gji/ggab421
Relevant papers and documents
Additional Constellation & Scientific Analysis of the Next Generation Gravity Mission Concept (ADDCON), ESA Contract No 4000118480/16/NL/FF/gp
Daras, I. (2016): Gravity field processing towards future LL-SST satellite missions, DGK Reihe C, Dissertationen, Heft Nr. 770, Verlag BAdW in Kommission beim Verlag C. H. Beck, ISSN 0065-5325, ISBN 978-3-7696-5182-9
Daras, I., Pail, R. (2017): Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions. Journal of Geophysical Research: Solid Earth, 122(9):7343-7362, doi.org/10.1002/2017JB014250
Daras, I.; Pail, R.; Murböck, M.; Yi, W. (2015): Gravity field processing with enhanced numerical precision for LL-SST missions. J. Geod. 89 (2), 99-110. dx.doi.org/10.1007/s00190-014-0764-2.
Flechtner, F.; Neumayer, K.H.; Dahle, C.; Dobslaw, H.; Fagiolini, E.; Raimondo, J.C.; Günter, A. (2016): What can be expected from the GRACE-FO Laser Ranging Interferometer for Earth Science applications? Surv. Geophys., 37(2), pp. 453-470. dx.doi.org/10.1007/s10712-015-9338-y
Hauk, M., Pail, R. (2018): Treatment of Ocean Tide Aliasing in the context of a Next Generation Gravity Field Mission. Geophys. J. Int. 214(1): 345–365, doi: doi.org/10.1093/gji/ggy145
Hauk, M., Schlicht, A., Pail, R., Murböck, M. (2017): Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS). Advances in Space Research 59(8): 2032-2047, doi.org/10.1016/j.asr.2017.01.028
Hauk, M.; Pail, R. (2019): Gravity field recovery by high-precision high-low inter-satellite links. Remote Sensing, 11(5), 537; doi.org/10.3390/rs11050537
Hauk, Markus (2020): Simulation studies for gravity field retrieval in the context of a next-generation gravity mission. Dissertation, TU Munich
Mission Requirements Document, Next Generation Gravity Mission as a Mass-change And Geosciences International Constellation (MAGIC) - A joint ESA/NASA double-pair mission based on NASA's MCDO and ESA's NGGM studies (2020). ESA-EOPSM-FMCC-MRD-3785
Pail R. et al., Observing Mass Transport to Understand Global Change and to Benefit Society: Science and User Needs – An international multi-disciplinary initiative for IUGG, Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Heft 320, ISBN 978-3-7696-8599-2, München, 2015
Pail, R., Bamber, J, Biancale, R., Bingham, R., Braitenberg, C., Eicker, A., Flechtner, F., Gruber, T. Güntner, A., Heinzel, G., Horwath, M, Longuevergne, L., Müller, J., Panet, I., Savenije, H., Seneviratne, S., Sneeuw, N., van Dam, T., Wouters, B. (2019a): Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space. Journal of Geodetic Science, Band 9(1): 48–58, https://doi.org/10.1515/jogs-2019-0006.
Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., Wouters B. (2015): Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. Surveys in Geophysics, 36(6):743-772, Springer Netherlands, doi.org/10.1007/s10712-015-9348-9
Pail, R., Yeh, H.-S, Feng, W., Hauk, M., Purkhauser, A., Wang, Ch., Zhong, M., Shen, Y., Chen, Q., Luo, Z., Zhou, H., Liu, B., Zhao, Y., Zou, X., Xu, X., Zhong, B., Haagmans, R., Xu, H. (2019b): Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise. Remote Sensing, 11(22), 2654, doi.org/10.3390/rs11222654
Purkhauser, A., Pail, R. (2019): Next generation gravity missions: near-real time gravity field retrieval strategy. Geophys. J. Int., 17(2):1314–1333, doi.org/10.1093/gji/ggz084
Purkhauser, A., Siemes, C., Pail, R. (2019): Consistent quantification of the impact of key mission design parameters on the performance of next-generation gravity missions. Geophysical Journal International 221 (2), 1190-1210
Visser, P.N.A.M. Using the GOCE star trackers for validating he calibration of its accelerometers J. Geodesy, Vol. 92, pp. 833-846, 2018, doi.org/10.1007/s00190-017-1097-8
Visser, P.N.A.M., van den IJssel, J. Calibration and validation of individual GOCE accelerometers by precise orbit determination, J. Geodesy, Vol. 90, No. 1, pp. 1-13, 2016, doi.org/10.1007/s00190-015-0850-0
Visser, P.N.A.M., van den IJssel, J. GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE, J. Geodesy, Vol. 74, pp. 590-602, 2000, doi.org/10.1007/s001900000119
Wiese D N, Visser P, Nerem R S (2011) Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Advances in Space Research 48 (2011) 1094–1107. doi.org/10.1016/j.asr.2011.05.027