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Introduction
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Fig. 2 Influence of Tu and Re on transition behavior, BL loading,
and BL entropy production.

Wake Generator

Methodology Unsteady flow field Unsteady operating behavior "
* Steady-state and transient * Formation of a Karman vortex street in  Development of characteristic BL regions for 30 TR e
simulations assess the impact of the cylinder wake, characterized by both the SS and TS.
periodic unsteady inflow on the BL periodic vortex shedding. * FV of the TS behaves similarly to the SS,
behavior of the highly loaded  Transient interaction of the wake with exhibiting comparable wake-induced
compressor cascade. the suction side BL, leading to localized transition.
* Numerical simulations replicate the turbulence and BL thickening. * Suction side BL of the RV is shielded by the
experimental setup for direct FV wake, reducing unsteady effects.
comparison and validation. ty low high e RVis primarily influenced by the WG’'s
: Casing oy S [m?/Ks”] NI W WG+TS, 35 mis pressure side wake branch (PSW).

* Increased wake-induced turbulence leads to
higher entropy generation and greater
overall airfoil losses.
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Fig. 3 Numerical flow domain with the Fig. 4 Wake-vane interaction at four time steps i |°] i |°] Fig. 6 Unsteady transition behavior of the
cylindrical WG and the investigated TS. for the TS for Upq, = 35 m/s. Fig. 5 Unsteady performance characteristics. SS (top) and TS (bottom) for Uy, = 35 m/s.

Surface Structures

Experimental Setup

Outlook The wind tunnel with WG
Stabilize the BL and mitigate the risk of * The experimental setup utilizes a 7.339 m long wind tunnel, powered by a radial
laminar flow separation. blower with a maximum output of 12.6 kI, capable of generating flow velocities
Achieve an optimal balance between low up to Ma = 0.137, depending on the nozzle configuration.
BL losses from extended laminar flow * The WG consists of a rotatable platform integrating the airfoil carrier, an electric
and high stability in the highly loaded motor, a rotating bar system, and upstream/downstream traversal access.
turbulent BL region. e The WG enables + 10° rotation around the design incidence and features
Determine the most effective surface adjustable endwall panels to compensate for any resulting gaps.
structure topology.  The airfoil carrier accommodates 5 SS vanes or 3 TS vanes, plus two fake blades

serving as channel barriers.

e The modular WG design allows for quick and easy exchange of the entire airfoil
carrier to facilitate different test configurations.

 The bar pitch is adjustable to match the airfoil pitch.

* The WG has a maximum power output of 5.5 kW, achieving a bar speed of 25 m/s,
with the potential to increase up to 35 m/s.

Used sensors

e Static airfoil surface pressure, wall shear
stress (hot films), wake traversal (5-hole
probes), velocity and turbulence (hot-wire
probes), total temperature and pressure for
operating point control.

Equipment

« PSC8 Rack (SVMtec) with 88 differential
pressure sensors (2.5 kPa), TSC12-T Rack
(SVMtec) with 12 Type-T thermocouples,

StreamLine Pro Constant Temperature

Fig. 8 Pressure and temperature sensors Anemometry (CTA) with 4 modules (DANTEC Fig. 9 Isometric view of the WG (left) and the current wind tunnel (right).
SVMtec (top); CTA from DANTEC (bottom). DYNAMICS).
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