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Hybrid Compressor Concepts — HybVer

Motivation and Technical Concept

Motivation The Technical Concept

e Aviation industry aims to reduce emissions and noise levels

Turbo compressor with partial electric drive |
* Parallel hybrid aero-engines integrate electric propulsion with gas turbines for fuel burn reductions, :

efficiency gains, and operational and -
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* Individual electric drive of compressor rotor stages

---------------------

power flexibility

Advantages —' | \y"’fmfl‘T'T'T%gl

 Compact design integration via counter-rotating rotors

* Focus on cycle integrated parallel hybrid
propulsion concepts
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* Holistic evaluation of turbo compressors featuring hybrid-electric drive (VSVs) y
* Multidisciplinary conceptualisation and integrated simulation for selected application cases * Improved cycle variability due to flexible electric || 2|
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Tab. 1: Performance and emission targets for the HybVer technology study.

Application Helicopter Regional turboprop Ahc,elecl o i
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Results

Selected Concept Thermal Management System

Concept selection based on 37 rating criteria in six - * Electric motors thermally critical, permanent magnets in Rotor cooling subsystem
main categories and reference to reference engine: et danger of demagnetisation

 Two cooling subsystems:

1. Improve compressor design

Improve overall power plant design integration 1. Liquid cooling subsystem for the stators

Nozzle

2. Air cooling subsystem for the rotor to avoid
potential leakage of cooling liquids into the gas path

Improve system efficiency

Improve system operability
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* Release of waste heat to the environment via a ram air
system

Reduce system weight

Stator Cooling Subsystem

Liquid jacket cooling in a helical shape * Heat conduction
from gas path to e

the permanent . BN 1 magnet
Magn ets os o % electric steel
Air cooling flow  ~insulation
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<—i— cooling flow
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Only copper and winding

The Concept losses in the stator
Losses transformed directly

: : : , : into waste heat .
 Contra-rotating rotor mounted on rolling element bearings in the hub section through the air gap

Cooling system design of the electric motor fie__l=1 = TBC
separate from electric * |

machine — ot flow
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* Axial centrifugal compressor with contra-rotating axial section

i disc

* Electrically assisted-high pressure spool by hub-mounted motor
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The next steps are investigating the mechanical integrity of the chosen concept including:
» Performing a preliminary mechanical design of the compressor components

2 100 E coolant flow rate:
. . . . PN 0.00kg/
> Assessing the rotor dynamical behaviour and failure modes S = 020kg's
. L . . . . " S ©
> Extending existing preliminary design routines to the new operating conditions 5 2
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Fig 4: Cooling mass flow requirement and pressure Fig 5: Magnet temperature for different
losses with respect to the waste heat cooling flow rates.
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