
International
Spring School
10.-14. March 2025

Anne Springer, Mail: springer@geod.uni-bonn.de Christian Mielke, Mail: mielke@geod.uni-bonn.de

Practical 3: Global analysis of gridded total water storage data

Purpose of the practical: In this practical the GRACE time series of global total water
storage anomalies will be analyzed for different (geophysical) signals. First, trends and ampli-
tudes of global GRACE grids will be investigated. Then, the method of “Principal Component
Analysis“ (PCA) will be applied to time series of GRACE data and to hydrological model
output provided by the GLDAS-NOAH model. PCA is used to extract individual dominant
modes of the data variability, while simultaneously suppressing those modes connected with
low variability. The given time-space data field (e.g. monthly data given on a geographical
grid) is separated into spatial structures called empirical orthogonal functions (EOF) and
their amplitudes in time, called principle components (PCs). PCA reduces the dimension of
data efficiently.

Additional material: Lecture Notes “Analysis Tools for GRACE- and Related Data Sets”
by Jürgen Kusche et al., “Summerschool Global Hydrological Cycle”, Mayschoss, Sept. 12-16,
2011.

Directories: The data sets needed for this practical can be found in the directory data Lab34.
The provided matlab functions can be found in the directory functions Lab34. The provided
python functions can be imported from the file SpringSchoolLib34.py.

Exercise 1: Investigating trends and periodic signals

1. Load the file grace tws.mat (Matlab: load(), Python: from scipy.io import

loadmat) to obtain a time series of gridded total water storage anomalies (TWSA)
expressed in equivalent water heights (ewh) based on GRACE observations. The file
contains longitude (lon, n × 1), latitude (lat, m × 1), time (time ewh grace, t × 1) and
GRACE derived ewh (ewh grace, n × m × t, [mm]) filtered with the DDK3 filter and
evaluated on a 1◦ grid.

2. Apply the function time2decimalYears to convert the temporal information of the
GRACE data to decimal years.

3. Compute trend, annual- and semiannual signal using the function fitTrend2D and visua-
lize the results using the function showData. The amplitude of the annual (semiannual)
signal can be computed from corresponding sine and cosine parameters according to
A =

√
p2sin + p2cos.

1



• Which is the unit of the computed trend?

• How does the trend change when selecting different time spans from the GRACE
data?

• Which geophysical signals explain the computed trends and amplitudes?

• optional: How does the annual amplitude change when applying different filters to
the GRACE data? (please use your functions from practical 2 to generate differently
filtered time series.)

Exercise 2 (optional): Regression against climate indices (Niño 3.4)

1. Load the file index.mat. The first column contains years, the second column months, and
the third column the Niño 3.4 indicator of central tropical Pacific sea surface temperature
anomalies.

2. Apply the function time2decimalYears to convert the temporal information of the index
data to decimal years.

3. Apply the function fitIndex to perform a multilinear regression of GRACE data against
the Niño 3.4 index. Make sure that you select a consistent time span.

4. Visualize the gridded amplitudes of the index (showData) to provide an estimate of the
magnitude of the total influence of the El Niño phenomen on terrestrial water storage.

Exercise 3a: Calculation and visualization of EOFs and PCs

1. Load the file noah tws.mat. The file contains a monthly time series of filtered (DDK3)
total water storage anomalies from the GLDAS-NOAH model (ewh noah [mm]) on a
1◦×1◦ geographical grid and corresponding temporal information (time ewh noah). The
model output is provided on the same geographical grid like the GRACE data used in
Exercise 1.

2. Select the time span 2003 to 2016 from GRACE and GLDAS-NOAH.

3. Interpolate missing GRACE data using

• Matlab: the Matlab-intern function interp1 (Hint: this is possible without any
for-loop).

• Python: the SciPy function interp1d (from scipy.interpolate import

interp1d).

4. Prepare the data for principal component analysis (PCA) by sorting the gridded values of
each month into one column of the matrix Y (longitude-wise). Thus, the data matrix Y
has the dimension p×t with p = number of grid points and t = number of points in time.

5. Calculate the spatial patterns (EOFs) from the GLDAS-NOAH data set using the func-
tion calculateEOF. These patterns serve as basis functions for further calculations.

2



6. Visualize the spatial patterns for the first four modes using the function showEOF.

7. Calculate the temporal evolution (PCs) of the above calculated GLDAS-NOAH ba-
sis functions both from the GRACE and the GLDAS-NOAH data using the function
calculatePC.

8. Visualize the temporal evolution for the first four modes, both for GRACE and GLDAS-
NOAH within one figure using the function showPCs.

9. Compare and interpret the results obtained from GRACE and GLDAS-NOAH.

Exercise 3b: Understanding compression properties of PCA

1. Visualize the eigenvalues calculated in Exercise 3a. You can use the function
showEigenvalues for an easy visualization.

2. How many modes are needed to reconstruct 80% and 95% of the GLDAS-NOAH variabi-
lity? Calculate the fraction of the signal variability reconstructed by p̄ modes according
to

varp̄ =

p̄∑
j=1

λj

∆2
with the total variance ∆2 =

p∑
j=1

λj. (1)

3. From a given matrix E containing the EOFs in its columns and a matrix D containing
the PCs in its rows, the signal matrix Y can be reconstructed by

Y = ED. (2)

Use the calculated PCA from the globalGLDAS-NOAH time series to reconstruct 80%
and 95% of the variability.

4. Plot the reconstructed signal (80%, 95%) and the original signal and the difference bet-
ween both using the function showData for one arbitrary month (e.g. 2005-06).

Exercise 3c (optional): Understanding domain dependence of PCA

1. Use the global GLDAS-NOAH time series.

2. Cut out the data in the Amazon region and in the Orinoco region using the function
selectPolygon. The boundary polygons for the two regions are provided by the files
amazon.mat and orinoco.mat. Each file contains a matrix with two columns, the first
column consisting of the longitude values of the polygon points, the second column
containing the latitude values.

3. Compute the EOFs and PCs for each region separately using the functions calculateEOF
and calculatePC.

3



4. Visualize only the first EOF and PC for each region. Here you can use the function
showEOFlocal.

5. How many modes would be necessary to reconstruct 95% of the signal?

6. Compare the regional results and the global results (that you obtained from Exercise 3a)
and discuss.

Functions: Variables marked in italic are optional.
Functions for visualization:

function showData (data,longitude,latitude,titleString,label,clim,cmap,reverse)
Visualization of globally gridded data.
Input • data: n×m vector containing the data values.

• longitude: n× 1 vector containing the longitude values [degree].
• latitude: m× 1 vector containing the latitude values [degree].
• titleString: string containing the title of the Figure.
• label: string containing the unit of the data.
• clim: 2× 1 vector containing the lower and upper limit of the colorbar, e.g.
[-100 100]

• cmap: choice of colormap: e.g. jet, parula
• reverse: boolean: if reverse==1 invert colormap

Output • 2D-plot of global gridded values

function showEigenvalues (Eigenvalues, titleString)
Visualization of the evolution of the eigenvalues.
Input • Eigenvalues: p× 1 vector of eigenvalues.

• titleString: a string describing the data.

Output • Plot of the eigenvalues.

function showEOF (EOF, longitude, latitude, i, titleString)
Visualization of the spatial pattern of one specific EOF with the index i.
Input • EOF: n ∗ m × 1 vector containing the gridded values of the one EOF to be

plotted, e.g. one column of the matrix E.
• longitude: n× 1 vector containing the longitude values of the grid points.
• latitude: m× 1 vector containing the latitude values of the grid points.
• i: index of the EOF to be visualized (EOFs are sorted according to size of
eigenvalue), needed for title of the plot.

• titleString: a string describing the data source (e.g. “GLDAS-NOAH”),
used for the title of the plot.

Output • Plot of the spatial pattern.

4



function showEOFlocal (EOF, longitude, latitude, border, i, titleString)
Visualization of the spatial pattern of one specific EOF with the index i on a spatial domain
limited by the polygon border. The dimension n refers to the number of grid points within
the polygon.
Input • EOF: n×1 vector containing the gridded values of the one EOF to be plotted.

E.g. one column of the matrix E.
• longitude: n× 1 vector containing the longitude values of the grid points.
• latitude: n× 1 vector containing the latitude values of the grid points.
• border: b × 2 matrix which contains the polygon of a region (e.g. amazon).
The first column consists of the longitude values of the polygon points, the
second column contains the latitude values.

• i: number of the EOF to be visualized (EOFs are sorted according to size of
eigenvalue), needed for title of the plot

• titleString: A string describing the data source (e.g. “GLDAS-NOAH”),
used for the title of the plot.

Output • Plot of the spatial pattern for a regional area.

function showPCs (PCs, time, i, legendStrings)
Visualization of the principle component with the index i.
Input • PCs: p × u vector containing the principle components which shall be visua-

lized, e.g. the i-th row of the matrix Dgrace and of matrix Dnoah ([PCs =
[PCigracePCinoah]). u is the number of components displayed, so u = 2 if the
first PC is displayed for GRACE and NOAH.

• time: p× 2 vector containing time in the format [years months]
• i: number of the PC to be visualized (sorted according to the size of the
eigenvalues), needed for title of the plot.

• legendStrings: legend entries provided as a struct of strings, e.g. {’GRACE’,
’NOAH’}

Output • Plot of the principle component.

Functions for computation:

function [time] = time2decimalYears (years, months)
Convert time provided as vectors of years and months to decimal years
Input • years: p× 1 vector of years

• months: p× 1 vector of months

Output • time: p× 1 vector of time in decimal years

function [IN, lon, lat] = selectPolygon (longitude, latitude, polygon)
Select longitudes and latitudes located within a polygon

5



Input • longitude: n× 1 vector containing the longitude values of the grid points.
• latitude: m× 1 vector containing the latitude values of the grid points.
• border: b × 2 matrix which contains the polygon of a region (e.g. amazon).
The first column consists of the longitude values of the polygon points, the
second column contains the latitude values.

Output • IN: n ∗m× 1 index vector of data points located within the polygon
• lon: c×1 vector containing the longitude values of data points located within
the polygon.

• lat: c× 1 vector containing the latitude values of data points located within
the polygon.

function [param, dataApprox] = fitTrend2D (time, data, mode)
Fit trend, annual and semi-annual signal
Input • time: p× 1 vector of time in decimal years

• data: n×m× p data to be approximated by the estimated parameters, with
n... number of longitudes, m... number of latitudes, p... number of time steps

• mode: string, defining if the semiannual signal should be included in the esti-
mation process (choose ’annual’ or ’semiannual’)

Output • param: n × m × #param vector of estimated parameters (bias, trend, sine
and cosine component of the annual signal, sine and cosine component of the
semiannual signal)

• dataApprox: n×m× p data approximated by the estimated parameters

function [param, dataApprox] = fitIndex (time, data, index, mode)
Fit trend, annual and semi-annual signal, and a selected climate index
Input • time: p× 1 vector of time in decimal years

• data: n×m× p data to be approximated by the estimated parameters, with
n... number of longitudes, m... number of latitudes, p... number of time steps

• index: p× 1 vector of climate index
• mode: string, defining if the semiannual signal should be included in the esti-
mation process (choose ’annual’ or ’semiannual’)

Output • param: n × m × #param vector of estimated parameters (bias, trend, sine
and cosine component of the annual signal, sine and cosine component of
the semiannual signal, real-valued and imaginary component of the climate
index)

• dataApprox: n×m× p data approximated by the estimated parameters

function [eigenvalues, E] = calculateEOF (Y)

6



Calculation of EOFs from a given data matrix Y. The function calculates the p eigenvectors
(=EOFs) corresponding to the p non-zero eigenvalues of the covariance matrix C = YYT .
To reduce the computation effort, the eigenvalue problem is in a first step solved for the
smaller matrix C′ = YTY, which has the same eigenvalues. The eigenvectors of the larger
matrix can then be calculated from the eigenvectors of the smaller matrix. The eigenvalues
are stored in the vector eigenvalues sorted according to their magnitude, the eigenvectors
are returned in the matrix E.
Input • Y: matrix containing the time series of gridded data sets. The dimension is

n× p with n = number of grid points and p = number of points in time.

Output • eigenvalues: p× 1 vector containing the p non-zero eigenvalues of the cova-
riance matrix C, sorted according to decreasing size.

• E: n × p matrix containing in its columns the eigenvectors (EOFs) of the
covariance matrix C. EOFs are sorted according to size of corresponding
eigenvalue.

function [D] = calculatePC (E, Y)
Calculation of principle components (PCs) by projecting the original data onto the basis
of the EOFs. The PCs are stored in the rows of the matrix D.
Input • Y: matrix containing the time series of gridded data sets. The dimension is

n× p with n = number of grid points and p = number of points in time.
• E: n × p matrix containing in its columns the eigenvectors (EOFs) of the
covariance matrix C. EOFs are sorted according to size of corresponding
eigenvalues.

Output • D: p× p matrix containing the principle components in its rows.

7


