
International
Spring School
10.-14. March 2025

Marius Schlaak, Mail: marius.schlaak@tum.de Grigorios Kalimeris, Mail: greg.kalimeris@tum.de

Lab 2: Filtering/De-striping

Purpose

In this Lab the technique of gravity field filtering in the spectral domain is presented.
For this purpose, a synthetically generated gravity field signal superimposed with typical alia-
sing effects (striping) is given which shall then be treated with different types of filters. In order
to understand how the various filters affect the gravity solution an error-free reference is pro-
vided as well. Finally, the filtering will be applied to two real GRACE-based monthly solutions.

Material

• Data

– Static gravity field model ITSG-Grace2018s in ICGEM format

– Synthetic monthly gravity solutions

∗ synthetic n90 signal (true signal, ICGEM format)

∗ synthetic n90 signal noise (true signal with correlated noise, ICGEM format)

– Real monthly gravity field solutions

∗ GSM-2 200404 0027 (April 2004, good month)

∗ GSM-2 200409 0030 (September 2004, bad month)

• Python functions (found in SpringSchoolLib12)

– readicgem, cs format, shs, triplot

– Gaussian filter

∗ filter sh gaussian

∗ gaussian

– Swenson-Wahr filter

∗ filter sh swenson

∗ cs format

1

– DDK filter

∗ cs2ddkformat

∗ filter sh ddk

∗ ddk2csformat

∗ cs format

∗ read BIN

∗ DDK filter coefficient files

Tasks

1. The file synthetic n90 signal contains a certain ”true” monthly variation signal, while
in model synthetic n90 signal noise the same signal is superimposed by correlated noise
similar to what can be found in real GRACE data. Import both models and visualize
them in terms of global EWH grids. Further, visualize the corresponding SH coefficients
with triplot and select a reasonable colorbar range. Interpret your results.

2. Apply different filters (or combinations of filters) to the noise-polluted model, e.g.

• Gaussian filter (experiment with different filter radii, e.g. 150-800 km)

• Swenson-Wahr decorrelation filter

• DDK filter (experiment with the different strengths 1 [strongest] to 8 [weakest])

Compute global EWH grids from the filtered difference model and compare them to the
true signal. Plot the corresponding SH coefficient triangles as well. Discuss which filter
resp. combination of filters yields the best result.

3. Import the gravity field models of April (GSM-2 200404 0027) and September 2004
(GSM-2 200409 0030) derived from GRACE observations and reduce the static gravity
field ITSG-Grace2018s from them. Visualise the residual signal in terms of EWH.

4. Apply different filters (cf. task 2) to both residual fields. In your opinion, which filter
(combination) yields the best result?

2

Python functions:

function [scs, ncs, header, scst, ncst] = readicgem(filename)
Reads potential coefficients in ICGEM-format from ASCII file
Input • filename: full path and file name [string]

Output • scs: potential coefficients in cs-format; size [n,n]
• ncs: formal errors of potential coefficients in cs-format (if available); size [n,n]
• header: structure containing header information of the ICGEM file
• scst: dot-coefficients in cs-format (if available); array size [n,n]
• ncst: formal errors of dot-coefficients in cs-format (if available); size [n,n]

Requires • —

function global grid = shs(gco, fun, colat, lon, GM, ae, alt)
Computes a spherical harmonic synthesis of a gravity functional on a global grid
Input • gco: disturbing potential coefficients given in cs-format; size [n,n]

• func: gravity functional to be computed; list or array

– 1: geoid heights [m]

– 2: gravity anomaly [mGal] = [1−5 m/s2]

– 3: vertical gravity gradient [E] = [1−9 m/s2/m]

– 4: total water storage [mm EWH] = [kg/m2]

– 5: no dimensioning

– 6: gravity disturbance [mGal] = [1−5 m/s2]

– 7: pressure [Pa]

– 8: vertical crustal deformation [m]

• colat: co-latitude vector for global grid
• lon: longitude vector for global grid
• ae: radius resp. semi-major axis of Earth [m]
• alt: altitude above earth surface for computation of synthesis [m]
• kwargs:

– lmax: maximum degree of expansion

– GM: gravity constant times Earth mass [m3/s2]

Output • global grid: global grid of the computed functional

Requires • legnorm

• loadlove farrell

3

function [c, s] = cs format(cs, s)
Transforms coefficients in cs-format into sc-format or separate c/s matrices and vice versa.
cs-format: |C\S|
sc-format: |/SC\|
c, s separate: |C\|, |S\|
Input • cs: if only input, then

– size [n,n] implies input in cs-format

– size [n,2n] implies input in sc-format

• s: if specified, then cs are c-coefficients while s are s-coefficients, both are of
size [n,n]

Output • c: if only output, then

– cs-format, i.e. size [n,n] if only input is cs of size [n,2n]

– cs-format, i.e. size [n,n] if two inputs are specified

– sc-format, i.e. size [n,2n] if only input is cs of size [n,n]

• s: if specified, c contains c-coefficients and s contains s-coefficients, both are
of size [n,n]

Requires • —

function [fig] = triplot(scs, nmax)
Plots a SH coefficient triangle (logarithmic scale)
Input • scs: potential coefficients in cs-format; size [n,n]

• nmax: maximum harmonic degree

Output • fig: figure handle

Requires • —

How to: Gaussian filter

cs fltr = filter sh gaussian(field, radius filter)

function cs fltr = filter sh gaussian(field, radius filter)
Applies Gaussian smoothing to spherical harmonic coefficients
Input • field: spherical harmonic coefficients in cs-format, size [n,n]

• radius filter: radius of Gaussian bell [km]

Output • scs: filtered spherical harmonic coefficients in cs-format; size [n,n]

Requires • gaussian

4

How to: Swenson-Wahr filter

scnew = filter sh swenson(sc)

function cs fltr = filter sh swenson(field)
Destriping in spectral domain based on Swenson & Wahr (2006)
Input • sc: spherical harmonic coefficients in either sc- or cs-format; size [n,2n] if sc-

format, size [n,n] if cs-format

Output • sc new: filtered spherical harmonic coefficients in sc-format; size [n,2n]

Requires • cs format

How to: DDK filter

shc ddkformat = cs2ddkformat(cs)

dataDDK = filter sh ddk(x,shc ddkformat)

scs filt = ddk2csformat(dataDDK)

function shc ddkformat = cs2ddkformat(cs)
Transforms spherical harmonic coefficients in cs-format to DDK-format
Input • cs: spherical harmonic coefficients in cs-format; size [n,n]

Output • shc ddkformat: structure of spherical harmonic coefficients in DDK-format

Requires • —

function dataDDK = filter sh ddk(number, data)
Performs DDK filtering on spherical harmonic coefficients in DDK-format
Input • number: order of DDK filter, values 1-8 (strongest=1, weakest=8)

• data: structure file of spherical harmonic coefficients in DDK-format

Output • dataDDK: structure of filtered spherical harmonic coefficients in DDK-format

Requires • read BIN

function cs = ddk2csformat(shc ddkformat)
Transforms spherical harmonic coefficients in DDK-format to cs-format
Input • shc ddkformat: structure of spherical harmonic coefficients in DDK-format

Output • cs: spherical harmonic coefficients in cs-format; size [n,n]

Requires • cs format

5

