

International Spring School

10.-14. March 2025

Marius Schlaak, Mail: marius.schlaak@tum.de Grigorios Kalimeris, Mail: greg.kalimeris@tum.de

Lab 2: Filtering/De-striping

Purpose

In this Lab the technique of gravity field filtering in the spectral domain is presented. For this purpose, a synthetically generated gravity field signal superimposed with typical aliasing effects (striping) is given which shall then be treated with different types of filters. In order to understand how the various filters affect the gravity solution an error-free reference is provided as well. Finally, the filtering will be applied to two real GRACE-based monthly solutions.

Material

- Data
 - Static gravity field model ITSG-Grace2018s in ICGEM format
 - Synthetic monthly gravity solutions
 - * synthetic_n90_signal (true signal, ICGEM format)
 - * synthetic_n90_signal_noise (true signal with correlated noise, ICGEM format)
 - Real monthly gravity field solutions
 - * GSM-2_200404_0027 (April 2004, good month)
 - * GSM-2_200409_0030 (September 2004, bad month)
- Matlab functions
 - readicgem.m, cs_format.m, shs.m, triplot.m
 - Gaussian filter
 - * gmt_gaussian_filter.m
 - * gmt_gaussian.m
 - Swenson-Wahr filter
 - * gmt_destriping_swenson.m
 - * gmt_cs2sc.m

- DDK filter
 - * gmt_cs2ddkformat.m
 - * gmt_destriping_ddk.m
 - * gmt_ddkformat2cs.m
 - * gmt_sc2cs.m
 - * read_BIN.m
 - * DDK filter coefficient files

Tasks

- 1. The file synthetic_n90_signal contains a certain "true" monthly variation signal, while in model synthetic_n90_signal_noise the same signal is superimposed by correlated noise similar to what can be found in real GRACE data. Import both models and visualize them in terms of global EWH grids. Further, visualize the corresponding SH coefficients with triplot and select a reasonable colorbar range. Interpret your results.
- 2. Apply different filters (or combinations of filters) to the noise-polluted model, e.g.
 - Gaussian filter (experiment with different filter radii, e.g. 150-800 km)
 - Swenson-Wahr decorrelation filter
 - DDK filter (experiment with the different strengths 1 [strongest] to 8 [weakest])

Compute global EWH grids from the filtered difference model and compare them to the true signal. Plot the corresponding SH coefficient triangles as well. Discuss which filter resp. combination of filters yields the best result.

- 3. Import the gravity field models of April (GSM-2_200404_0027) and September 2004 (GSM-2_200409_0030) derived from GRACE observations and reduce the static gravity field ITSG-Grace2018s from them. Visualise the residual signal in terms of EWH.
- 4. Apply different filters (cf. task 2) to both residual fields. In your opinion, which filter (combination) yields the best result?

Matlab functions:

function [scs, ncs, header, scst, ncst] = $readicgem(filename)$	
Reads potential coefficients in ICGEM-format from ASCII file	
Input	• filename: full path and file name [string]
Output	 scs: potential coefficients in cs-format; size [n,n] ncs: formal errors of potential coefficients in cs-format (if available); size [n,n] header: structure containing header information of the ICGEM file scst: dot-coefficients in cs-format (if available); array size [n,n] ncst: formal errors of dot-coefficients in cs-format (if available); size [n,n]
Requires	• —

function g	function $global_grid = shs(gco, fun, lmax, col, lon, GM, ae, alt)$	
Computes	Computes a spherical harmonic synthesis of a gravity functional on a global grid	
Input	• gco: disturbing potential coefficients given in cs-format; size [n,n]	
	• fun: gravity functional to be computed	
	- 1: geoid heights $[m]$	
	- 2: gravity anomaly $[mGal] = [1^{-5} m/s^2]$	
	- 3: vertical gravity gradient $[E] = [1^{-9} m/s^2/m]$	
	$-$ 4: total water storage $[mm\ EWH] = [kg/m^2]$	
	- 5: no dimensioning	
	– 6: gravity disturbance $[mGal] = [1^{-5} m/s^2]$	
	- 7: pressure [Pa]	
	- 8: vertical crustal deformation $[m]$	
	• lmax: maximum degree of expansion	
	• col: co-latitude vector for global grid	
	• lon: longitude vector for global grid	
	• GM: gravity constant times Earth mass $[m^3/s^2]$	
	• ae: radius resp. semi-major axis of Earth [m]	
	• alt: altitude above earth surface for computation of synthesis $[m]$	
Output	• global_grid: global grid of the computed functional	
Requires	• legnorm	
	• loadlove_farrell	

function	$[c, s] = cs_format(cs, s)$
	ns coefficients in cs-format into sc-format or separate c/s matrices and vice versa.
cs-format: $ C \backslash S $	
sc-format	
	ate: $ C \setminus , S \setminus $
Input	• cs: if only input, then
Impat	GB. If only input, then
	- size [n,n] implies input in cs-format
	- size [n,2n] implies input in sc-format
	• s: if specified, then cs are c-coefficients while s are s-coefficients, both are of
	$\operatorname{size}\left[\mathrm{n,n}\right]$
Output	• c: if only output, then
	- cs-format, i.e. size [n,n] if only input is cs of size [n,2n]
	- cs-format, i.e. size [n,n] if two inputs are specified
	- sc-format, i.e. size [n,2n] if only input is cs of size [n,n]
	• \mathbf{s} : if specified, c contains c-coefficients and s contains s-coefficients, both are of size $[n,n]$
Requires	• —

function [fig] = triplot(scs, nmax)	
Plots a SH coefficient triangle (logarithmic scale)	
Input	• scs: potential coefficients in cs-format; size [n,n]
	• nmax: maximum harmonic degree
Output	• fig: figure handle
Requires	• —

How to: Gaussian filter

cs_fltr = gmt_gaussian_filter(field, radius_filter)

function cs_fltr = gmt_gaussian_filter(field, radius_filter)	
Applies Gaussian smoothing to spherical harmonic coefficients	
Input	 field: spherical harmonic coefficients in cs-format, size [n,n] radius_filter: radius of Gaussian bell [km]
Output	• scs: filtered spherical harmonic coefficients in cs-format; size [n,n]
Requires	• gmt_gaussian

How to: Swenson-Wahr filter

scnew = gmt_destriping_swenson(sc)

function cs_fltr = gmt_gaussian_filter(field, radius_filter)	
Destriping in spectral domain based on Swenson & Wahr (2006)	
Input	• sc: spherical harmonic coefficients in either sc- or cs-format; size [n,2n] if sc-format, size [n,n] if cs-format
Output	• sc_new: filtered spherical harmonic coefficients in sc-format; size [n,2n]
Requires	• gmt_cs2sc

How to: DDK filter

shc_ddkformat = gmt_cs2ddkformat(cs)
dataDDK=gmt_destriping_ddk(x,shc_ddkformat)
scs_filt = gmt_ddkformat2cs(dataDDK)

$function shc_ddkformat = gmt_cs2ddkformat(cs)$	
Transforms spherical harmonic coefficients in cs-format to DDK-format	
Input	• cs: spherical harmonic coefficients in cs-format; size [n,n]
Output	• shc_ddkformat: structure of spherical harmonic coefficients in DDK-format
Requires	• —

function of	$dataDDK = gmt_destriping_ddk(number, data)$
Performs DDK filtering on spherical harmonic coefficients in DDK-format	
Input	 number: order of DDK filter, values 1-8 (strongest=1, weakest=8) data: structure file of spherical harmonic coefficients in DDK-format
Output	• dataDDK: structure of filtered spherical harmonic coefficients in DDK-format
Requires	• read_BIN

$function cs = gmt_ddkformat2cs(shc_ddkformat)$	
Transforms spherical harmonic coefficients in DDK-format to cs-format	
Input	• shc_ddkformat: structure of spherical harmonic coefficients in DDK-format
Output	• cs: spherical harmonic coefficients in cs-format; size [n,n]
Requires	• gmt_sc2cs