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GRACE/-FO observations for operational applications at local scales?

limited spatial resolution
limited temporal resolution and latency
cannot separate surface and subsurface water storage changes

short-term extreme 
event prediction

irrigation planning monitoring of local 
groundwater depletion

landslide risk 
assessment
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How can we increase the spatial and temporal resolution?

● Deep learning methods
● Random forest
● Support vector machines
● Bayesian methods
● Regression
● …

statistical downscaling merging approaches data assimilation
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● Bayesian merging
● Optimal interpolation
● Wavelet based merging
● Deep learning fusion
● …

➔ training GRACE TWSA 
towards independent high-
resolution data

➔ merging GRACE TWSA with 
independent high-resolution 
data

➔ integrating GRACE TWSA into 
hydrology or land surface 
models

● Kalman Filter-Based methods
● Particle Filter methods
● Variational data assimilation
● …



How can we increase the spatial and temporal resolution?

✔ provides high-resolution TWSA
✔ computational efficient
✔ independent of physical models
✗ no individual water storages
✗ no increase of temporal resolution

statistical downscaling merging approaches data assimilation
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✔ combines strength of mult. data sets
✔ improves spat. and temp. res.
✔ provides different water storages
✗ inconsistencies between data sets
✗ depends on data availability

✔ physically consistent
✔ improves spat. and temp. res.
✔ explicitly accounts for uncertainty
✔ improves model prediction
✔ improves individual water 

storages and fluxes
✗ complex implementation
✗ computationally expensive

➔ validation remains a challenge for all three approaches!



Today we will learn … 
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● What do we need to set up a GRACE/-FO data assimilation framework?
● Which are the specific challenges of GRACE/-FO data assimilation frameworks?
● Which applications exist for GRACE/-FO data assimilation frameworks?
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Which model is used?
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Which study region is selected?
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Let us start with a recipe 
for GRACE/-FO data 
assimilation!
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Set up of a data assimilation framework

GRACE observations 
+ error information
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Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Terminology
● DA … data assimilation
● TWSA … terrestrial water storage anomalies
● GRACE … GRACE + GRACE-FO
● KF … Kalman Filter
● EnKF … Ensemble Kalman Filter

observation 
operator



Recap GRACE/-FO observations
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Which GRACE data set do we use for DA?
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Geophysical corrections
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● Glacial isostatic adjustment (GIA)
● Lakes / reservoirs
● Earthquakes
● Glaciers
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Which kind of observation errors are considered?



16

Observation grid and observation error model

  without correlationsTWSA OSSE experiment with 
CLM3.5 over Europe 

(here: Daugava, Narva, 
Neva)
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Observation grid and observation error model

  with correlationsTWSA OSSE experiment with 
CLM3.5 over Europe 

(here: Daugava, Narva, 
Neva)

➢ Spatial correlations need to be taken into account!



Recap GRACE/-FO observations
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● Long-term mean has to be removed consistently with the hydrological model used for DA
● Geophysical corrections need to be applied carefully
● Realistic error estimates including correlations are important



GRACE observations 
+ error information
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Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Set up of a data assimilation framework

observation 
operator



GRACE observations 
+ error information
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Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Set up of a data assimilation framework

observation 
operator
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Hydrological models and land surface models
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Lumped rainfall-runoff 
models:
establish a relationship 
between rainfall and runoff 
for predicting floods in 
particular in limited-gauged 
catchments.

Land surface models:
developed with the scope of 
simulating exchange 
processes between land 
surface and atmosphere as 
represented by atmospheric 
circulation models.

Conceptual models:
developed for hydrological 
applications (simulation of 
discharge, water balances in 
river catchments, water 
management).



Hydrological models and land surface models
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➢  entire river (sub-) basin seen 
as one unit

➢  impose many assumptions
➢  empirical equations describe 

the physics

➢  Complete (physical) energy 
and water balances at the 
land surface

➢  vertical water fluxes
➢  no explicite river routing

➢  surface water fluxes and 
lateral fluxes

➢  transport in the river network
➢  groundwater
➢  human water abstraction
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Hydrological models and land surface models



Validation: Hydrological Models

TWS = snow +  canopy + surface water + soil moisture + groundwater

human water 
consumption

natural 
vegetation

land surface 
models (LSMs)

global hydrological 
and water resource 
models (GHWRMs)

GRACE

anthropogenic 
influences

(             )
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26Scanlon et al. (2018) Global models underestimating large decadal declining and rising water storage trends 
relative to GRACE satellite data, Proceedings of the National Academy of Sciences.



A regional Earth system model

© Forschungszentrum Jülich



The Community Land Model CLM5



Das Community Land Model CLM5



Many, many equations….



The code



Surface data



Atmospheric forcings



Water storage changes over Europe

http://drive.google.com/file/d/14qN5EWa91b5mVtFRg-glIKQLQlf-0-y_/view


Error representation of hydrological models
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Perturbation of
● initial conditions
● atmospheric forcings
● soil properties
● model states

Precipitation perturbation

Spread of soil 
liquid water in 
deepest soil layer

Temperature perturbation

Atmospheric perturbation Standard texture perturbation Advanced texture perturbation



Recap hydrology and land surface models
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● Models represent different water storages and are available at various 
spatial and temporal resolutions.

● Models often do not account for / underestimate human impacts.
● Representing the uncertainty of modeled water storages is challenging.



GRACE observations 
+ error information
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Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Data assimilation frameworks

observation 
operator



GRACE observations 
+ error information
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Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Data assimilation frameworks

observation 
operator



Hydrological models versus GRACE observations

39



State vector
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Snow

Surface water
Canopy water

Soil water

Soil ice

Different options:
● All compartments that contribute to TWS
● Neglect small compartments, e.g. canopy water
● Sum up compartments, e.g. soil water and soil ice 

in each layer
● Sum up different soil layers
● Put directly TWS into the state vector



Observation operator
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∑ 

Relate the model output to the observations
➢ sum up modeled storage compartments vertically
➢ aggregate modeled storage compartments to the GRACE grid
➢ compute monthly means of TWS



Recap state vector and observation operator
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● We obtain updates for all entries of the state vector. 
● Computation of the observation operator can be challenging in the case 

of highly-parallelized model code.



GRACE observations 
+ error information
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Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Set up of a data assimilation framework

observation 
operator



GRACE observations 
+ error information
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Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Set up of a data assimilation framework

observation 
operator



We start in 1960 - Development of the Kalman Filter
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Journal of Basic Engineering, March 1960



The Kalman Filter - Early applications
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● Apollo Space Program (1960s): Position and velocity 
of the lunar module using onboard sensors

● Missile guidance and radar tracking (1960s - 1970s): 
military applications, positions and velocities under 
noisy conditions

● Control systems (1970s): aircraft autopilot systems, 
navigation systems

● GPS navigations (1980s - Present): core component!
● Atmospheric dynamics (1970s): application to low 

order atmospheric models, state estimation 
incorporating sparse meteorological observations

● River flow and hydrological modeling (1970s): 
streamflow forecasting, flood prediccitons

● Soil moisture estimation (1980s): assimilation of 
rainfall and evapotranspiration data

Kalman, 1960



Toy example
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- Car drives, what is the position at time 
t+1 if we know the position at time t?

?



Toy example
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- Car drives, what is the position at time 
t+1 if we know the position at time t?

- system equation (model)
● Steering change → orientation
● Deceleration/acceleration → 

velocity



Toy example
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- Car drives, what is the position at time 
t+1 if we know the position at time t?

- system equation (model)
● Steering change → orientation
● Deceleration/acceleration → 

velocity



Toy example
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Wind

- Car drives, what is the position at time 
t+1 if we know the position at time t?

- system equation (model)
● Steering change → orientation
● Deceleration/acceleration → 

velocity
- Problems: Unmodeled processes (e.g. 

wind, friction,...), systematics, 
imperfect input data



Toy example
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Wind

- Car drives, what is the position at time 
t+1 if we know the position at time t?

- system equation (model)
● Steering change → orientation
● Deceleration/acceleration → 

velocity
- Problems: Unmodeled processes (e.g. 

wind, friction,...), systematics, 
imperfect input data



Toy example
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Wind

- Car drives, what is the position at time 
t+1 if we know the position at time t?

- system equation (model)
● Steering change → orientation
● Deceleration/acceleration → 

velocity
- Problems: Unmodeled processes (e.g. 

wind, friction,...), systematics, 
imperfect input data



Toy example
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Wind

- Car drives, what is the position at time 
t+1 if we know the position at time t?

- system equation (model)
● Steering change → orientation
● Deceleration/acceleration → 

velocity
- Problems: Unmodeled processes (e.g. 

wind, friction,...), systematics, 
imperfect input data

- Update model estimate based on 
observations



Kalman Filter Basics - Bayes Theorem
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posterior PDF of the model states 
depending on the observations

… model state vector: contains all uncertain quantities we wish to estimate  

… observation vector 

Bayes theorem

PDF … probability density function, Gaussian

observation or likelihood PDF given 
the model states

model forecast or prior PDF

wanted!



Kalman Filter Basics - Model state and observations

… forecasted model state at time k

… model error assuming white Gaussian noise with zero mean

… observations at time k

… analyzed model state at time k

… observation error vector

… linking model state to observations with the observation operator  

… forecasted model state based on the previous time step using model operator 
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Kalman Filter Basics - linear case
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… forecasted model state 

… predicted model error covariance matrix at time step k

Cost function:



Kalman Filter Basics - fundamental equations
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… analyzed model state 

Cost function:

… innovations 

… Kalman Gain Matrix

… covariance matrix of the analyzed 
model state



The Extended Kalman Filter
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In reality, we often have to deal with nonlinear models. 
● The model forecast equations are linearized using Taylor expansion. This is computationally expensive.
● Analysis steps are identical to those of the linear Kalman filter. But the analysis equations represent only 

an approximation to the optimal estimate.
● Neglected higher order terms can lead to an unrealistic representation of the model error and to 

unbounded error growth leading to instabilities in the filter algorithm.

Development of the Ensemble Kalman Filter:
● Handling strongly nonlinear systems more accurately.
● Reducing the high computational cost of the traditional Kalman filter.
➢ Approximation of the model error covariance matrix by a finite set of ensemble members, avoiding the 

need to store and update a massive covariance matrix. 



We go back to 1994 - Development of the EnKF
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➢ Developed for non-linear ocean models, e.g., improved representation of the Gulf Stream behavior
➢ Later applied to meteorology, hydrology, and petroleum engineering
➢ Became a standard tool in flood forecasting, groundwater modeling, and land surface modeling



t=0

initial 
ensemble

forecasted 
ensemble

t=1

observation

analyzed
ensemble

t=2
Ensemble Kalman Filter



The Ensemble Kalman Filter
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… model error covariance matrix

… model error covariance matrix

… analysis equation

Kalman Gain Matrix innovationsEnsemble of model states

Square root formulation for efficient implementation: 

… ensemble perturbation matrix



The Ensemble Kalman Filter: Square root formulation
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… analysis step in square root formulation

… analyzed ensemble perturbations

transform matrix

innovation covariance matrix



Variants of the EnKF
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● Ensemble Transform Kalman Filter (ETKF)
➢ ensemble perturbations are transformed using a deterministic transformation matrix

● Singular Evolutive Interpolated Kalman Filter (SEIK)
➢ Analysis step is performed in the ensemble error subspace
➢ More efficient computation
➢ More robust for small ensemble sized

● Error Subspace Transform Kalman Filter (ESTKF)
➢ favorable combination of ETKF and SEIK
➢ improved consistency and stability

➢ Improve stability, reduce sampling noise, efficiently update ensemble perturbations
➢ Avoid the need for perturbed observations
➢ Different computations of the transform matrix

➢ Do not use the EnKF for GRACE DA, prefer the ESTKF!



How to implement?
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● Provides fully implemented, parallelized, and optimized ensemble-based algorithms
● Online and offline mode available
● Provides a number of different filters and tuning options
● Provides the so-called “OMI” interface for simultaneous assimilation of different observation types



GRACE observations 
+ error information

65

Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Set up of a data assimilation framework

observation 
operator

filter tuning



Tuning of the Filter Algorithm: Inflation
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➢ Counteract excessive variance reduction caused by spurious correlations in the updates
➢ Avoid filter divergence in operational ensemble DA systems with small ensemble sizes
➢ Multiplicative inflation factor: 

➢ Adaptive inflation factors are spatially and temporally variable



Tuning of the Filter Algorithm: Localization
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➢ Mitigate spurious long range correlations 
➢ Restrict influence of observations on nearby grid cells
➢ Improve performance with limited ensemble size

Domain localization
➢ analysis step is applied to model 

subdomains

Covariance localization
➢ a weight matrix is applied to the model 

covariance matrix

20 ensemble 
members

100 ensemble 
members

20 ensemble 
members with 
localization

localization 
matrix

Kirchgessner et al. (2012)

Xing et al. (2021)



Tuning of the Filter Algorithm: Localization
➢ Mitigate spurious long range correlations 
➢ Restrict influence of observations on nearby grid cells
➢ Improve performance with limited ensemble size

68



Recap data assimilation algorithm
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● Most frameworks use ensemble Kalman Filter based algorithms for GRACE/-FO 
data assimilation.

● Efficient toolboxes with implementations of various filters are available.
● Do not use the EnKF, but rather the ESTKF. 
● Localization is very beneficial for GRACE/-FO data assimilation.



GRACE observations 
+ error information
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Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Set up of a data assimilation framework

observation 
operator

filter tuning



Assimilation increments depend on the settings of the DA framework

71

atmospheric 
perturbation

standard texture 
perturbation

advanced perturbation of 
soil properties, case 1

advanced perturbation of 
soil properties, case 2



Ensure consistency of the updated model states
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● Update depending variables, e.g. snow depth.
● Apply constraints regarding maximum and minimum values.
● Apply constraints regarding maximum increments.



Recap GRACE/-FO DA frameworks
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GRACE observations 
+ error information
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Hydrological model
+ error information

DA 
algorithm

Updated model 
+ error information

innovations
assimilation increments

Set up of a data assimilation framework

observation 
operator

filter tuning



GRACE DA choices
GRACE product and 
observation error Geophysical corrections Assimilation strategy

●Spherical harmonics (SH)
●Mascons
●Gridded level 3 product
●Line-of-sight gravity 

difference (LGD)

●Glacial isostatic 
adjustment (GIA)

●Lakes / reservoirs
●Earthquakes
●Glaciers

●Observation operator
●DA algorithm
●Application of increments



Research applications and  
service applications
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Multi-mission DA frameworks
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Assimilation of individual variables and simultaneous DA 
in the Mississippi river basin
➢ RMSD reduction with respect to groundwater wells

Khaki et al. (2020), Multi‑mission satellite remote sensing data for 
improving land hydrological models via data assimilation, Scientific 
reports

Multi-mission DA helps to better constrain 
individual water storages and fluxes.



Improved snow estimates
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RMSD differences between OL and DA of estimated snow depth as compared to the Canadian Meteorological 
Centre Daily Snow Depth Analysis Data
➢ warm colors indicated improvements due to DA

Zhao et al. (2018), Multi-sensor land data assimilation: Toward a robust global soil moisture and snow estimation , Remote Sensing of Environment

GRACE DA helps to better estimate seasonal snow changes at high temporal and spatial resolution.
➢ Significantly improves the skill of numerical weather prediction
➢ Contributes to water resources management



Groundwater forecast
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Getirana et al. (2020), 
GRACE Improves 
Seasonal Groundwater 
Forecast Initialization 
over the United States, J. 
Hydrometeor.

GRACE DA impact on RMSD of seasonal groundwater forecast (three month hindcasts) with respect 
to groundwater well observations.

GRACE DA improves groundwater estimates and prediction. 
➢ Valuable tool for early warning systems and water resources management.



Improved representation of extreme events
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Area of the Niger basin (%) that is affected by 
drought computed based on a GRACE-
assimilating hydrological model

Dibi-Anoh et al. (2022), Hydrometeorological Extreme Events in West 
Africa: Droughts, Surveys in Geophysics

GRACE DA helps to understand the evolution 
of droughts. 
➢ Also employed in operational drought 

monitors.



Human impact analysis
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Nie et al. (2019), Assimilating GRACE Into a Land Surface Model in the Presence of an Irrigation-Induced Groundwater Trend , Water Resources Research.

GRACE DA can help to identify shortcomings of current models. However, neglected human impacts are not 
necessarily corrected in a meaningful way.



Human impact analysis
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Nie et al. (2019), Assimilating GRACE Into a Land Surface Model in the Presence of an Irrigation-Induced Groundwater Trend , Water Resources Research.

GRACE DA can help to identify shortcomings of current models. However, neglected human impacts are not 
necessarily corrected in a meaningful way.



Assessment of regional flood potential
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Reager et al. (2019), Assimilation of GRACE Terrestrial Water Storage Observations into a 
Land Surface Model for the Assessment of Regional Flood Potential, remote sensing.

GRACE DA improves the understanding of contributors to 
regional flood events and the predictability of such events.



Streamflow forecast
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Getirana et al. (2020), Satellite Gravimetry Improves Seasonal Streamflow 
Forecast Initialization in Africa, Water Resources Research.

Differences DA-OL
Streamflow forecasts are enhanced by the long memory of 
groundwater and deep soil moisture, two main TWS 
components updated by GRACE-DA.



Landslide prediction
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Felsberg et al. (2021), Global Soil Water Estimates as 
Landslide Predictor: The Effectiveness of SMOS, SMAP, 
and GRACE Observations, Land Surface Simulations, and 
Data Assimilation, J. Hydrometeor.

Global landslide modeling can benefit from 
GRACE data assimilation under certain 
conditions. 

sfmc … surface soil moisture content
rzmc … root zone soil moisture content
catdef … catchment deficit



NASA’s GRACE-Based Drought Indicators
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https://nasagrace.unl.edu/



NASA’s GRACE-Based Drought Indicators
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https://nasagrace.unl.edu/



U.S. Drought monitor (USDM)
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https://droughtmonitor.unl.edu/



European Drought Observatory (EDO)
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https://drought.emergency.copernicus.eu/



Famine Early Warning Systems Network (FEWS NET)
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Global Flood Awareness System
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https://global-
flood.emergency.copernicus.eu/
glofas-forecasting/

GRACE DA not directly 
included :(



WMO Hydrological Services
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Some projects explore use of GRACE in 
data assimilation frameworks for 
hydrological services, such as:

● agriculture
● disaster risk reduction
● energy
● industry
● environment



Future directions

93

● Working towards a standard procedure for assimilating GRACE data.
● Exploring alternative GRACE products such as line-of-sight gravity differences for 

near real time applications.
● Assimilating GRACE data into coupled Earth system models.
● Upcoming new gravity missions will lead to substantial improvements in the 

spatial and temporal resolution of GRACE TWSA and be a great asset for 
assimilation frameworks.
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