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short-term extreme irrigation planning monitoring of local landslide risk
event prediction groundwater depletion assessment

limited spatial resolution
limited temporal resolution and latency
cannot separate surface and subsurface water storage changes
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statistical downscaling

Deep learning methods
Random forest

Support vector machines
Bayesian methods
Regression
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training GRACE TWSA
towards independent high-
resolution data
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merging approaches

Bayesian merging
Optimal interpolation
Wavelet based merging
Deep learning fusion

merging GRACE TWSA with
independent high-resolution
data

data assimilation

Kalman Filter-Based methods
Particle Filter methods
Variational data assimilation

=> integrating GRACE TWSA into

hydrology or land surface
models 4
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statistical downscaling merging approaches

provides high-resolution TWSA
computational efficient
independent of physical models
no individual water storages

no increase of temporal resolution

combines strength of mult. data sets
improves spat. and temp. res.
provides different water storages
inconsistencies between data sets
depends on data availability

x X X N«

=> validation remains a challenge for all three approaches!

SRS XXX
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~__ Surface

data assimilation

physically consistent

improves spat. and temp. res.
explicitly accounts for uncertainty
improves model prediction
improves individual water
storages and fluxes

complex implementation
computationally expensive



Today we will learn ...

® \What do we need to set up a GRACE/-FO data assimilati
® Which are the specific challenges of GRACE/-FO data ass
®  Which applications exist for GRACE/-FO data assimilatio
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Let us start with a recipe
for GRACE/-FO data
assimilation!




GRACE observations
+ error information

Hydrological model
+ error information

\\ Amon

DA
algorithm

Y

innovations
assimilation increments

\

Updated model
+ error information

operator

-

Terminology \
DA ... data assimilation

TWSA ... terrestrial water storage anomalies
GRACE ... GRACE + GRACE-FO

KF ... Kalman Filter

EnKF ... Ensemble Kalman Filter

/
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 filtering necessary | 9 /
» Leakage effect

Mascons

http://
www?2.csr.utexas.edu/
grace/RLO6_mascons.html

e parameters in space
domain

e spatial constraints
applied

» |eakage effects avoided
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Which GRACE data set do we use for DA?

GRACE Analysis Approach

SH
o Mascon
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Geophysical corrections

Glacial isostatic adjustment (GIA)
Lakes / reservoirs

Earthquakes

Glaciers

(@) GRACE orig (b) removed

=100°

Mississipi & Great Lakes

-25 =20 -15 -10 -05 0.0 0.5 1.0
Linear Trend [cm EWH/year]

(c) relocated

Deggim et. al, 2021
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Which kind of observation errors are considered?

Adoption count

16 1

14 1

-
o

co

()

Observation error model (SH)

no correlations

pm full covariance matrix

I basin average
precribed correlation length
2008 2010 2012

2014

2016
Years

2018

2020

2022

15



200

without correlations e O] OSSE experiment with
— RF CLM3.5 over Europe
100 —DA-0.5 (here: Daugava, Narva,
; Neva)
g —DA-1
A == DA-2
’ DA-3
; \// DA-4
Ay DA-
-100 1 ’_C i v 5

01/2003 01/2004 01/2005 01/2006 01/2007

16



200
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> Spatial correlations need to be taken into account!

17



Recap GRACE/-FO observations

® [ong-term mean has to be removed consistently with
® Geophysical corrections need to be applied carefully
® Realistic error estimates including correlations are img
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GRACE observations Hydrological model
+ error information + error information

]
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_ operator
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assimilation increments

\

Updated model
+ error information
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|

GRACE observations
+ error information

Hydrological model
+ error information

]

\DA

algorithm

Y

innovations

4/- observation

operator

assimilation increments

\

Updated model
+ error information

J
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atmospheric moisture
over ocean

from ocean to land
e

: wetlands
 brackish

The Water Cycle

stored. Water moves at large scales and at very small
scales. Water moves naturally and because of human

how it moves, and how clean it is.

wansport ot motsure_ R

_;ﬁ'rééip tation over land

The water cycle describes where water is on Earth and
how it moves. Water is stored in the atmosphere, on the
land surface, and below the ground. It can be a liquid, a
solid, or a gas. Liquid water can be fresh, saline (salty), or
a mix (brackish). Water moves between the places itis

actions, Human water use affects where water is stored,

rivers ]

s __municipal
ECE water use

streamflow

to ocean
o

Pools store water. 96% of all water is stored in oceans
and is saline. On land, saline water is stored in saline
lakes. Fresh water is stored in liguid form in freshwater
lakes, artificial reservoirs, rivers, and wetlands. Water
is stored in solid, frozen form in ice sheets and glaciers,
and in snowpack at high elevations or near the Earth’s
poles, Water vapor is a gas and is stored as atmospheric
moisture over the ocean and land. In the soil, frozen
water is stored as permafreost and liquid water is stored
as soil moisture, Deeper below ground, liquid water is
stored as groundwater in aquifers, within cracks and
pores in the rock.

atmospheric moisture '
over land

ice sh eets

_ and glaciers
.I / I.'_ .I/

&

Fluxes move water between pools. As it moves, water
can change form between liquid, solid, and gas.

Circulation mixes waler in the oceans and transports
water vapor in the atmosphere. Water moves between

% water use 3

On Earth, water can be fresh, saline, ora mixof both,
Pools are places where water is stored, like the ocean.

- Fluxes are the ways that water moves between pools, such
as evaporation ; Ei , precipitation 1! ‘
recharge /L&, or human use .=,

See www.usgs.gov/water-cycle for definitions.

Pools and Fluxes

,discharge s,

agricultural
water use

We alter the water cycle, We redirect rivers. We build
dams to store water, We drain water from wetlands for
development. We use water from rivers, lakes, reservairs,
and groundwater aguifers. We use that water to supply

the atmosphere and the surface through p
evapotranspiration, and precipitation. Water moves
across the surface through snowmelt, runoff, and
streamflow. Water moves into the ground through

infiltration and groundwater recharge. Underground,

groundwater flows within aguifers. It can return to the
surface through natural groundwater discharge into
rivers, the ocean, and from springs.

ourh and ities. We use it for agricultural
irrigation and grazing livestock. We use it in industrial
activities like thermoelectric power generation, mining,
and aguaculture, The amount of water that is available
depends on how much water is in each pool (water
quantity). It also depends on when and how fast water
moves (water timing), how much water we use (water
use), and how clean the water is {water quality).

overview of
how water

ZUSGS

| permafrost |

groundwa ter
recharge,

General

moves

We affect water quality. In agricultural and urban areas,
irrigation and precipitation wash fertilizers and pesticides
into rivers and groundwater. Power plants and factories
return heated and contaminated water to rivers. Runoff
carries chemicals, sediment, and sewage into rivers and
|lakes. Downstream from these sources, contaminated
water can cause harmful algal blooms, spread diseases,
and harm habitats. Climate change is affecting the water
cycle. Itis affecting water quality, quantity, timing, and
use. It is causing ocean acidification, sea level rise, and
more extreme weather. By understanding these impacts,
we can work toward using water sustainably.
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Divides of

sub- hastns\\

X

basin

Surface energy fluxes Hydrology

O6 -%C:}g 3 Fto::nilatinn

Momentumn flux
W’ndsp eed

Evaporatiol

Latent heat fux
Servsibde haat fhax

Impermeable Bedrock

Lumped rainfall-runoff
models:

establish a relationship
between rainfall and runoff
for predicting floods in
particular in limited-gauged
catchments.

Conceptual models:
developed for hydrological
applications (simulation of
discharge, water balances in
river catchments, water
management).

Land surface models:
developed with the scope of
simulating exchange
processes between land
surface and atmosphere as
represented by atmospheric
circulation models.

22



Divides of
sub-basins

X

/

basin

3 Surface energy fluxes Hydrology

06 o C::}io 3 Ptocj:lilatinn

Momentumn flux
Wind speed
9 u,

Evaporation

Latent heat fu
Seraibba heat fhux

Surfac
Infilration runo

Soil (sand, clay, organic

Impermeable Bedrock

> entire river (sub-) basin seen
as one unit

> impose many assumptions

> empirical equations describe
the physics

> surface water fluxes and
lateral fluxes

> transport in the river network

> groundwater

> human water abstraction

> Complete (physical) energy
and water balances at the
land surface

> vertical water fluxes

> no explicite river routing

23




Model Type Components  Anthropogenic Reference

AWRA-L LSM SW, SM, GW  Partial Viney et al. (2014)

CABLE LSM SW, SM No Kowalczyk et al. (2006)
CLM3.5 LSM SW, SM No Oleson et al. (2007)

CLM4 LSM SwW, SM No Lawrence et al. (2011)
CLMS5-CRUNCEP LSM SW, SM No Lawrence et al. (2019)
CLMS5-GSWP3 LSM SW, SM No Lawrence et al. (2019)
CLSM LSM SW, SM No Koster et al. (2000a)
HBV-SIMREG GHM SW, SM No Lindstrém et al. (1997)
HTESSEL LSM SW, SM No Balsamo et al. (2015)
LISFLOOD GHM SW, SM, GW  Yes Van Der Knijff et al. (2010)
MESH GHM/LSM Hybrid SW, SM, GW  Yes Pietroniro et al. (2007)
MGB GHM SW, SM, GW  Yes Collischonn et al. (2007)
Noah LSM SW, SM No Ek et al. (2003)

Noah-MP LSM SW, SM No Niu et al. (2011)
ORCHIDEE LSM SW, SM, GW  Partial Polcher et al. (2011)
ParFlow-CLM LSM+G SW, SM,GW No Maxwell et al. (2015)
PCR-GLOBWB GHM SW, SM, GW  Yes Sutanudjaja et al. (2018)
SURFEX-TRIP LSM SW, SM No Decharme et al. (2013)
SWBM GHM SW, SM No Koster and Mahanama (2012)
VIC LSM SW, SM Yes Liang et al. (1996)

W3RA GHM SW, SM No Van Dijk (2010)

WGHM GHM SW, SM, GW  Yes Miiller Schmied et al. (2021)
WBM GHM SW, SM, GW  Yes Tiaden et al. (1998)
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human water natural

consumption vegetation
T\!\

TWS = snow + (cano surface water + soil moisture + groundwater
~_ -
—
land surface
GRACE " models (LSMs) -
\/

global hydrological
and water resource
models (GHWRMs)

anthropogenic
influences
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Scanlon et al. (2018) Global models underestimating large decadal declining and rising water storage trends 26
relative to GRACE satellite data, Proceedings of the National Academy of Sciences.




SW, LWdn, Rain
T,P,QV, U

TerrSysMP

Configuration File

> Coupling Frequency

> Two way data exchange
> Data Transformation
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The Community Land Model CLM5




Hydrology

Precipitation

T Tranzpiration

Throughfall

Sublirmation ¥ Evapaoration
Surface
Mkt Imfileraticn

Impermizable Bedrock




CLM5 Documentation

7.3.2 Numerical Solution

With reference to Figure 7.2, the equation for conservation of mass (equation (7.41)) can be integrated over each layer

das
—Zh,i—1 *—Zh,i—1 "—Zh,i—1
[ @ dz = —/ @ dz — j edz. (7.64)

-
T Zh,i dt —Zh, i dz T Zh,i

Note that the integration limits are negative since z is defined as positive upward from the soil surface. This equation
can be written as

agliq,i

Az;
“ o

=Gt a-e (7.65)

where g; is the flux of water across interface zy; , g;—1 18 the flux of water across interface z, ;1 , and ¢; is a layer-
averaged soil moisture sink term (ET loss) defined as positive for flow out of the layer (mm s™'). Taking the finite
difference with time and evaluating the fluxes implicitly at time n + 1 yields

A LAO iq, i T T
S = g gt e (7.60)

. _ g+l gn
where Aﬁhq,% - {)‘liq,i HHQ:";'

thickness of layer i (mm).

is the change in volumetric soil liquid water of layer ¢ in time Afand Az; is the

The water removed by transpiration in each layer e; is a function of the total transpiration E’ (Chapter 5) and the
effective root fraction r ;

o )i (7.67)
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Necview 2.1.9 David W. Pierce 14 July 2019
displaying percent clay

£ frame 1110

displayed range: 0 to 59.3507 unitless
Current: (i=319, j=0) 2.53507 (x=319, y=0)

qut -1 4 <« [[[] » » Edit ? Delay: B opts
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= . = : e =

10 20 30 : 50
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Ncview 2.1.9 David W. Pierce 14 July 2019
displaying Instantaneous_precipitation
frame 16/248 2-0¢t-2022 21:00:00
displayed range: 2.26228e-19 to 0.00263952 mm/s
Current: (i=443, j=348) 0.000271326 (x=443, y=348)

2022-10.nc (on jwlogin09.juwels)

Quit -1 4 4 n » M Edit ? Delay: I Opts

3gauss InvP InvC MagX1 Linear Axes Range Bilin Print
RN B

0.0005 1] |j'| o 0.0015 0 |:|'t|:' 0 |j|j3.5
TBOT PSRF

QBOT WIND FSDS

FLDS

Name: Min: Current;: Max: Units:
time 1.07599e+06 2-Oct-2022 21 1.07673e+06 hours since 1
lat (4]

0




Ncview 2.1.9 (on jwlogin09.juwels)
Mcview 2.1.9 David W. Pierce 14 July 2019
displaying total water storage

displayed range: 4936.83 to 8950.92 mm (5500 to 7000 shown)
Current: (i=421, j=0) 1e+36 (x=36.59657, y=21.80497)

Quit =1 4 ¢ NI » [ Edt ? Delay: I Opts

3gauss InvP InvC MagXl Linear Axes Range Bilin Print

5600 5000 6200 5400 6600 7000
mcdate mcsec mdcur
mscur nstep £S0I DZS0Ol

WATSAT SUCSAT BSW

H20CAN H2OSNO SOILICE

SOILLIQ WA

Name: in: Current: 3 Units:
time days since 2C
lat degrees_nori

lon degrees_easl



http://drive.google.com/file/d/14qN5EWa91b5mVtFRg-glIKQLQlf-0-y_/view

Error representation of hydrological models

Precipitation perturbation

Perturbation of

® nitial conditions

® atmospheric forcings
® soil properties

® model states

..
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Recap hydrology and land surf

® Models represent different water storages and are ave
spatial and temporal resolutions.

® Models often do not account for / underestimate hu

® Representing the uncertainty of modeled water storag




GRACE observations
+ error information

Hydrological model
+ error information

~—

\ Am'ion

DA

_ operator
algorithm

Y

innovations

assimil

ation increments

\

Updated model
+ error information
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Data assimilation frameworks

GRACE observations
+ error information
\ & bservation
D'_A‘ operator
algorithm
innovations

assimilation increments

\
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SNOW

ice

Clouds
f and water vapour :
AN — ’ B
/* Water st iati Condensation f
C e exchange| & _Trensport (atent eatin surtrace waters
V,/__; and snow Precipitation of atmosphere

Boundary layer
(and exchange

with free atmosphere) Wet l a n d S

Evapotranspiration Evaporation

Surface
runoff

canopy
soil water
soil ice

groundwater
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Snow

Surface water
Canopy water

Soil water

Soil ice

Different options:

All compartments that contribute to TWS

Neglect small compartments, e.g. canopy water
Sum up compartments, e.g. soil water and soil ice
in each layer

Sum up different soil layers

Put directly TWS into the state vector

40



Observation operator

Relate the model output to the observations
> sum up modeled storage compartments vertically
> aggregate modeled storage compartments to the GRACE grid
> compute monthly means of TWS

41



Recap state vector and obser

® \We obtain updates for all entries of the state vecto
® Computation of the observation operator can be c
of highly-parallelized model code.




Set up of a data assimilation framework

GRACE observations
+ error information
~——
\ & observation
DA operator
algorithm
. Y .
innovations

assimilation increments

\
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Set up of a data assimilation framework

GRACE observations
+ error information
\\
T~ < bservation
D'_A‘ operator
algorithm
innovations

assimilation increments

\




R. E. KALMAN

Research Institute for Advanced Study,?
Baltimore, Md.

A New Approach to Linear Filtering
and Prediction Problems'’

The classical filtering and prediction problem is re-examined using the Bode-
~hannon representation of random processes and the “state transition” method of
analysis of dynamic systems. New results are:

(1) The formulation and methods of solution of the problem apply without modifica-
tion to stationary and nomnstationary statistics and to growing-memory and infinite-
memory filters.

(2) A nonlinear difference (or differential) equation is derived for the covariance
matrix of the optimal estimation error. From the solution of this equation the co-
efficients of the difference (or differential) equation of the optimal linear filter are ob-
tained without further calculations.

(3) The filtering problem is shown to be the dual of the noise-free regulator problem.

The new method developed here is applied to two well-known problems, confirming
and extending earlier results.

The discussion is largely self-contained and proceeds from first principles; basic
concepts of the theory of random processes are reviewed in the Appendix.

Journal of Basic Engineering, March 1960
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Apollo Space Program (1960s): Position and velocity
of the lunar module using onboard sensors

Missile guidance and radar tracking (1960s - 1970s):

military applications, positions and velocities under
noisy conditions

Control systems (1970s): aircraft autopilot systems,
navigation systems

GPS navigations (1980s - Present): core component!
Atmospheric dynamics (1970s): application to low
order atmospheric models, state estimation
incorporating sparse meteorological observations
River flow and hydrological modeling (1970s):
streamflow forecasting, flood prediccitons

Soil moisture estimation (1980s): assimilation of
rainfall and evapotranspiration data

Ax MPORTANT class of theoretical and practical
problems in communication and control is of a statistical nature.
Such problems are: (1) Prediction of random signals; (i1) separa-
tion of random signals from random noise; (i1) detection of
signals of known form (pulses, sinusoids) in the presence of
random noise. Kalman, 1960
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Car drives, what is the position at time
t+1 if we know the position at time t?

47



Car drives, what is the position at time
t+1 if we know the position at time t?
system equation (model)
® Steering change - orientation
® Deceleration/acceleration >
velocity

48



Car drives, what is the position at time
t+1 if we know the position at time t?
system equation (model)
® Steering change - orientation
® Deceleration/acceleration >
velocity
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Car drives, what is the position at time
t+1 if we know the position at time t?
system equation (model)

® Steering change - orientation

® Deceleration/acceleration >

velocity

Problems: Unmodeled processes (e.g.
wind, friction,...), systematics,
imperfect input data
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Car drives, what is the position at time
t+1 if we know the position at time t?
system equation (model)

® Steering change - orientation

® Deceleration/acceleration >

velocity

Problems: Unmodeled processes (e.g.
wind, friction,...), systematics,
imperfect input data
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Car drives, what is the position at time
t+1 if we know the position at time t?
system equation (model)

® Steering change - orientation

® Deceleration/acceleration >

velocity

Problems: Unmodeled processes (e.g.
wind, friction,...), systematics,
imperfect input data
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Predicted state
estimate

Measurement

Car drives, what is the position at time
t+1 if we know the position at time t?
system equation (model)

® Steering change - orientation

® Deceleration/acceleration >

velocity

Problems: Unmodeled processes (e.g.
wind, friction,...), systematics,
imperfect input data
Update model estimate based on
observations
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) ... model state vector: contains all uncertain quantities we wish to estimate

y ... observation vector

Bayes theorem

wanted!

p(x]y) x p (y]x) p (x)
posterior PDF of the model states observation or likelihood PDF given model forecast or prior PDF
depending on the observations the model states

PDF ... probability density function, Gaussian



f

Xk ... forecasted model state at time k

Ak .. model error assuming white Gaussian noise with zero mean
Yk .. observations at time k

Ek ... observation error vector

a
Xk. ... analyzed model state at time k

Xi, = Mxj_; + a

... forecasted model state based on the previous time step using model operator A{

YL — HkX£ —+ €l .. linking model state to observations with the observation operator H. -



X£ — MX£—1 + gk .. forecasted model state

ng (k) — MTC£x (k — ].)M + Qk ... predicted model error covariance matrix at time step k

Cost function:
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Kalman Filter Basics - fundamental equations

Cost function:

T
Jct) = (xf = xt) CL) ™ (= x¢) + (ve = Hix)" Cyy (k) ™" (yi = i)

a _ of Data
Xk — Xk: + dek; ... analyzed model state Assimilation
dk = Yir — Hkxi ... Innovations

f T f T - 1 4 Sprin ‘GeirEvensen-FenkCVossepoel §
Kk — Cx$(k)Hk (chscm(k)Hk + ny(i{?)) ... Kalman Gain Matrix Data
é\ssi(rjnilation |

a undamentals

C:I:aj(k) — (I T Kka) ng(k) ... covariance matrix of the analyzed RUnfedFormstinafthe Siate
model state




In reality, we often have to deal with nonlinear models.

® The model forecast equations are linearized using Taylor expansion. This is computationally expensive.

® Analysis steps are identical to those of the linear Kalman filter. But the analysis equations represent only
an approximation to the optimal estimate.

{

Neglected higher order terms can lead to an unrealistic representation of the model error and to
unbounded error growth leading to instabilities in the filter algorithm.

Development of the Ensemble Kalman Filter:
® Handling strongly nonlinear systems more accurately.
® Reducing the high computational cost of the traditional Kalman filter.

>  Approximation of the model error covariance matrix by a finite set of ensemble members, avoiding the
need to store and update a massive covariance matrix.
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JOURNAL OF GEOPHYSICAL RESEARCH
Oceans

Regular Section

Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast

error statistics

Geir Evensen

First published: 15 May 1994 | https://doi.org/10.1029/94)JC00572 | Citations: 3,662

» Developed for non-linear ocean models, e.g., improved representation of the Gulf Stream behavior

> Later applied to meteorology, hydrology, and petroleum engineering
» Became a standard tool in flood forecasting, groundwater modeling, and land surface modeling
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t=0 t=1

=2
forecasted
ensemble
initial analyzed '
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j\'re_

- 1 ; i i el
Cim(k’) =~ o Z (Xi( Fos X{) (Xi( e X{) ... model error covariance matrix
L g
~ ~ —1
X? =X/ + KD = X/ + ¢/ HT (HCL:HT + ny) (Y —HX/ )
N

/

Ensemble of model states Kalman Gain Matrix innovations

... analysis equation

Square root formulation for efficient implementation:

X’f — Xf — Xf ... ensemble perturbation matrix
X'/ (X’f)T

Clr = —N 1
e

... model error covariance matrix

| ; P Ny 1 ; g A
X% N & Xf(Xf) HT( HXf(Xf) HT+ny)

Ny — 1 N, —1

—l

(Y - HXf)



—1

/ / T 1 !/ / T
X =X/ + ——=X" (X/) HT(N —HX/ (X HT+ny> (Y - 1x/)
g g
HJ\ ~ J
S St
F

innovation covariance matrix

o |
Xa:Xf+N 1st’f];‘—l (Y—fo)

... analysis step in square root formulation

... analyzed ensemble perturbations

X' (X’a)T = X'/ (TenxrT bpir) (X/f)T

TE?’LKFT§W,KF — IL - STF_ls

transform matrix 62



> Improve stability, reduce sampling noise, efficiently update ensemble perturbations
> Avoid the need for perturbed observations
> Different computations of the transform matrix T

® Ensemble Transform Kalman Filter (ETKF)

> ensemble perturbations are transformed using a deterministic transformation matrix
® Singular Evolutive Interpolated Kalman Filter (SEIK)

> Analysis step is performed in the ensemble error subspace

> More efficient computation

> More robust for small ensemble sized
® Error Subspace Transform Kalman Filter (ESTKF)

> favorable combination of ETKF and SEIK

> improved consistency and stability

> Do not use the EnKF for GRACE DA, prefer the ESTKF!
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Implementation of the analysis step
Implementation for ESTKF
Implementation for LESTKF
Implementation for ETKF
a ra e Implementation for LETKF
Implementation for SEIK

Implementation for LSEIK
Implementation for SEEK

- - [ ]
Implementation for EnKF
Implementation for LEnKF
Implementation for NETF

Implementation for LNETF
Implementation for PF

Implementation for 3D-Var
Implementation for 3D Ensemble Var

Implementation for Hybrid 3D-Var

Provides fully implemented, parallelized, and optimized ensemble-based algorithms
Online and offline mode available
Provides a number of different filters and tuning options

Provides the so-called “OMI” interface for simultaneous assimilation of different observation types
64



Set up of a data assimilation framework

GRACE observations
+ error information

~——

< observation
D'_A‘ operator
/, algorithm
filter tuning
Y
innovations

assimilation increments

\
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> Counteract excessive variance reduction caused by spurious correlations in the updates
> Avoid filter divergence in operational ensemble DA systems with small ensemble sizes
» Multiplicative inflation factor:

xf:r(xf—if) +x/

[ 2

» Adaptive inflation factors are spatially and temporally variable
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> Mitigate spurious long range correlations

> Restrict influence of observations on nearby grid cells
> Improve performance with limited ensemble size

Domain localization
> analysis step is applied to model

subdomains
Global domain .
e o B
. Observations ® o ol o
® Model grid
o @ o o
. Local domain
e o/ B
Local observations

Kirchgessner et al. (2012)

Covariance localization

> a weight matrix is applied to the model

1]
5
20 ensemble ]
members z

10

20 ensemble |
members with?]
localization  *j

35 1

Xing et al. (2021) ?

covariance matrix

100
0.75
0.50
025
0.00
.25
0.50
.75
-1.00

100
0.75
0.50
0.25
0.00
.25
£0.50
.75
-1.00

100
075
0.50

0.00

0.25
0.50
0.75
-1.00

100
0.75
050
0.25
0.00
0.25
0.50
0.75
-1.00

100 ensemble
members

localization
matrix
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> Mitigate spurious long range correlations
> Restrict influence of observations on nearby grid cells
> Improve performance with limited ensemble size

TWS increment EnKF TWS increment LESTKF
40°

[mm] ) [mm]
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Recap data assimilation algorith

® Most frameworks use ensemble Kalman Filter based algc
data assimilation.

® Efficient toolboxes with implementations of various filte

® Do not use the EnKF, but rather the ESTKF.

® |ocalization is very beneficial for GRACE/-FO data assimil



Set up of a data assimilation framework

GRACE observations
+ error information
~——
< observation
D'_A‘ operator
/, algorithm
filter tuning
innovations

assimilation increments

\
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Assimilation increments depend on the settings of the DA framework

<)

!ll EnkF b) LESTKF

] Illlll IIE"I' ] 60°N
| ‘ ‘ l atmospheric
50°N

perturbation

Layer
—
o

40°N

30°N

standard texture ;s
perturbation & R 2E F0E

advanced perturbation of
soil properties, case 1

Tl Ili[ | WL |
10 ‘ ' ‘ | | advanced perturbation of
‘ | soil properties, case 2
20 ‘ . ! ] . i 1] l

“
-0.02 -0.01 0.00 0.01 0.02
Increment [mm3/mm3]

Layer
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Ensure consistency of the updated model states

® Update depending variables, e.g. snow depth.
® Apply constraints regarding maximum and minimum values.
® Apply constraints regarding maximum increments.
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Recap GRACE/-FO DA fra

Ensemble of

model states GRACE-TWSA
(month =i)
Forecast
Y
Observation
Day 1| Day 2| Day 3 Day 30| Gperator GRACE-DA
+
‘H ¢
Updated ble of model stat g THter Monthly
pdated ensemble of model states algorithm increment
Day 30 s Day 3| Day2| Day1|< Smoother algorithm
Inc 30 Inc3 Inc2 Inc1



Set up of a data assimilation framework

GRACE observations
+ error information

~——

< observation
D'_A‘ operator
/, algorithm
filter tuning
Y
innovations

assimilation increments

Y
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GRACE product and
___observation erro

Geophysical corrections Assimilation strategy

[
X-X-IL

® Spherical harmonics (SH) ® Glacial isostatic ® Observation operator

® Mascons adjustment (GlA) ® DA algorithm

® Gridded level 3 product ® | akes / reservoirs ® Application of increments

® Line-of-sight gravity ® Earthquakes
difference (LGD) ® Glaciers



Research applications ant
service applications




Multi-mission DA frameworks

50

S 4w

30

TWS change

Soil moisture

LAI

Simultaneous

50

40

30

50

40

30

50

40

30

pouad uone[iwissy

pouad Bunyseosalo

Assimilation of individual variables and simultaneous DA
in the Mississippi river basin
» RMSD reduction with respect to groundwater wells

Multi-mission DA helps to better constrain
individual water storages and fluxes.

Khaki et al. (2020), Multi-mission satellite remote sensing data for
improving land hydrological models via data assimilation, Scientific
reports



RMSD differences between OL and DA of estimated snow depth as compared to the Canadian Meteorological
Centre Daily Snow Depth Analysis Data
» warm colors indicated improvements due to DA

Zhao et al. (2018), Multi-sensor land data assimilation: Toward a robust global soil moisture and snow estimation, Remote Sensing of Environment

GRACE DA helps to better estimate seasonal snow changes at high temporal and spatial resolution.
> Significantly improves the skill of numerical weather prediction
> Contributes to water resources management
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GRACE DA improves groundwater estimates and prediction.

> Valuable tool for early warning systems and water resources management.
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Getirana et al. (2020),
GRACE Improves
Seasonal Groundwater
Forecast Initialization
over the United States, J.
Hydrometeor.
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Dibi-Anoh et al. (2022), Hydrometeorological Extreme Events in West
Africa: Droughts, Surveys in Geophysics

Area of the Niger basin (%) that is affected by
drought computed based on a GRACE-
assimilating hydrological model

GRACE DA helps to understand the evolution
of droughts.
> Also employed in operational drought
monitors.
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Nie et al. (2019), Assimilating GRACE Into a Land Surface Model in the Presence of an Irrigation-Induced Groundwater Trend, Water Resources Research.
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GRACE DA can help to identify shortcomings of current models. However, neglected human impacts are not
necessarily corrected in a meaningful way.
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Nie et al. (2019), Assimilating GRACE Into a Land Surface Model in the Presence of an Irrigation-Induced Groundwater Trend, Water Resources Research.
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GRACE DA can help to identify shortcomings of current models. However, neglected human impacts are not
necessarily corrected in a meaningful way.
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Reager et al. (2019), Assimilation of GRACE Terrestrial Water Storage Observations into a
Land Surface Model for the Assessment of Regional Flood Potential, remote sensing.

GRACE DA improves the understanding of contributors to
regional flood events and the predictability of such events.
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Streamflow forecast

TWS anomaly [mm]

80 - OL=2.51mm/yr
DA=4.11mm/yr
60 - GRACE=5.47mm/yr

DA .

GRACE

2004 2008

2012

2016

Getirana et al. (2020), Satellite Gravimetry Improves Seasonal Streamflow
Forecast Initialization in Africa, Water Resources Research.

Streamflow forecasts are enhanced by the long memory of

groundwater and deep soil moisture, two main TWS
components updated by GRACE-DA.

Evap [mm/d]

Total runoff [mm/d]

Differences DA-OL
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AR A A Felsberg et al. (2021), Global Soil Water Estimates as . . )
(Lanctiﬁlidcj Landslide Predictor: The Effectiveness of SMOS, SMAP, Global landslide modeling can benefit from
meaium H H H . . . .
P o P ; and GRA_CE_ Ol_)servatlons, Land Surface Simulations, and GRACE data assimilation under certain
o _es v s s wel ess e Data Assimilation, J. Hydrometeor. .
i conditions.

sfmc ... surface soil moisture content
rzmc ... root zone soil moisture content
catdef ... catchment deficit

61
100 ¢

s K : 5¢ Data assimilation results  cdf-matched observations
: MERRA2 uncorrected DA_GRACE O SMOS-SMO
e e e rainfall -=- = - DA_SMOS-SM0 ® SMOS-SM1
daily rainfall depth [nm/day] s Model-only at 36-km =~ = - DA_SMOS-SM1 GRACE-TWS
[ e GRIEDE ] -= = - DA_SMOS-Tb Presence of observations
-~ = - DA_SMOS-GRACE v SMOS-Tb
GEOS FP corrected -= = - DA_SMAP-Tb 7 SMAP-Tb
— rainfall -

— Model-only at 9-km




GRACE-Based Shallow Groundwater Drought Indicator
March 10, 2025

Wetness percentiles are relative to the period 1948-2012
Cell Resolution 0.125 degrees

Projection of this document is Lambert Azimuthal Equal Area

| I I I [ I
2 5 10 20 8 _ 70 8 8 9 98
Wetness Percentile

https://nasagrace.unl.edu

https://nasagrace.unl.edu/

March 10, 2025

@ GRACE-Based Shallow Groundwater Drought Indicator
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Groundwater and Soil Moisture Forecasts Initialized from GRACE-FO Data

Assimilation

GRACE-Based Ground Water Drought Indicator

Data Modeled 3/1/2025
30 Day Forecast 4/1/2025

Wetness percentiles are relative to the period 1948-2014
Cell Res olution 0.125 degrees

Projection of this document & Lambert Azimuthal Equal Area
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https://nasagrace.unl.edu/
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U.S. Drought monitor (USDM)

Map released: March 6, 2025
Data valid: March 4, 2025

|| View grayscale version of the map
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European Drought Observatory (EDO)

https://drought.emergency.copernicus.eu/
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FEWS NET Scientists Get
Ahead of South Sudan Floods

Projected food security outcomes, October 2024 - Figure 1. Projected flooding in October
January 2025 2024

South Sudan o

Presence Countries
1 1: minimal
[ 2: stressed
B 3: crisis P
. 17\
I < emergency {59 FEWS NET

M s Famine

Source: FEWS NET/USGS and NASA

The Famine Early Warning Systems Network (FEWS NET)
monitors conditions around the world and provides early
warning information and an.atysis about food insecurity.
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WMO Hydrological Services

Disaster Risk :
Reduction Industry

% <
Public . >
Water Supply S . Environment
Ve A
N ﬂ[ﬂu
Vol
Agriculture Energy

Some projects explore use of GRACE in
data assimilation frameworks for
hydrological services, such as:

agriculture

disaster risk reduction
energy

industry

environment
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Working towards a standard procedure for assimilating GRACE data.
Exploring alternative GRACE products such as line-of-sight gravity differences for
near real time applications.

Assimilating GRACE data into coupled Earth system models.

Upcoming new gravity missions will lead to substantial improvements in the
spatial and temporal resolution of GRACE TWSA and be a great asset for
assimilation frameworks.
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