

New Refined Observations of Climate Change from Spaceborne Gravity Missions

International Spring School Neustadt an der Weinstraße, Germany, March 10-14, 2025

Water cycle and climate applications of GRACE/-FO

Annette Eicker (HafenCity University Hamburg)

Not enough water?

River Rhine, Summer 2022

© Federico Gambarini/dpa

Too much water?

Male, Malediven

By Shahee Ilyas - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.ptp?curid=64751484

Water at the wrong location?

Ahr Valley, July 2021

dpa Bildfunk Picture Alliance/dpa | Boris Roessler

Climate change

groundwater!

Flooding

redistributions of (water) mass (on and underneath the Earth's surface)

Droughts

Glacier melting

Annette Eicker

NEROGRAV Spring School 2025

6

The Party of

GRACE monthly gravity field models

8

Annette Eicker

NEROGRAV Spring School 2025

Which signals are (not) included in these gravity field solutions?

9

Annette Eicker

NEROGRAV Spring School 2025

GRACE/-FO data analysis

Background models:

- Atmosphere and ocean (AOD1B)
- Ocean tides
 - (+ Solid Earth tides, etc.)

13

GRACE/-FO data analysis

Background models:

- Atmosphere and ocean (AOD1B)
- Ocean tides
 - (+ Solid Earth tides, etc.)

- 1) de-aliasing
- 2) signal separation!

14

HafenCity Universität

Lecture

.. Shihora

Lecture

M. Hart Davis

Mass variations from GRACE/-FO

ITSG-Grace2018 daily (2006-01-01)

Mass variations from GRACE/-FO

HafenCity Universität Hamburg

Ice mass loss

Tapley et al. (2018)

Ice mass loss

150.000

of these ice blocks are melting in Greenland

every second.

What happens to sea level?

Sea level

What happens to sea level?

Sea level

Terrestrial water storage

Terrestrial water balance

 $\frac{dS}{dt} = P - E - R$

Storage change

surface water

snow

soil moisture

groundwater

leservoirs: volume in 10³ km³ **Atmosphere** luxes: volume in 10³ km³/year 12.7 water vapor transport 40 condensation precipitation on land anspiration 113 Snow and ice evaporation precipitation 26,400 P from the into the ocean ocean **Rivers and lakes** 413 373 Surface noisture flow 122 percolation R (runoff Oceans Groundwater groundwater flow 1,340,000 15,300

www.visionlearning.com/en/library/Earth-Science/6/The-Hydrologic-Cycle/99

Annette Eicker

27

TCU HafenCity Universität Hamburg

Groundwater

Groundwater: G3P Project

Groundwater: G3P Project

Gravity for monitoring of droughts and floods?

Drought in Europe

Rhine river, Summer 2022

© Federico Gambarini/dpa

Drought in central Europe

(c) E. Börgens, GFZ

Drought in central Europe

HafenCity Universität Hamburg

Drought in central Europe

HafenCity Universität Hamburg

Annette Eicker

Gravity as early-warning system?

Annette Eicker

danger of flooding

HafenCity Universität Hamburg

Gravity as early-warning system?

Annette Eicker

NEROGRAV Spring School 2025

Gravity as early-warning system?

Jäggi et al. (2019)

Annette Eicker

NEROGRAV Spring School 2025

Short time scale (days)?

Ideally: Daily GRACE solutions in (near) real time

Outline

Outline

Update of:

Eicker, A., Jensen, L., Wöhnke, V., Dobslaw, H., Kvas, A., Mayer-Gürr, T., Dill, R. (2020): Evaluating short-term hydro-meteorological fluxes with daily satellite data from the GRACE mission, *Scientific reports*, *10*, *4505*, https://doi.org/10.1038/s41598-020-61166-0

Annette Eicker

Update of:

Eicker, A., Jensen, L., Wöhnke, V., Dobslaw, H., Kvas, A., Mayer-Gürr, T., Dill, R. (2020): Evaluating short-term hydro-meteorological fluxes with daily satellite data from the GRACE mission, *Scientific reports*, *10*, *4505*, https://doi.org/10.1038/s41598-020-61166-0

Annette Eicker

HafenCity Universität Hamburg

HafenCity Universität Hamburg

HafenCity Universität Hamburg

Comparison GRACE vs. ERA5

HafenCity Universität Hamburg

HafenCity Universität Hamburg

Comparison GRACE vs. ERA5

Comparison GRACE vs. ERA5

Correlation (2003-2015)

Correlation (2003-2015)

HafenCity Universität Hamburg

Improvement (RMSD) ERA5 vs. ERA-Interim

Are identified improvements reliable?

=> Compare to **GPCC rain gauge** evaluation of precipitation

Annette Eicker

Improvement (RMSD) ERA5 vs. ERA-Interim

Improvement (RMSD) ERA5 vs. ERA-Interim

Improvement (RMSD) ERA5 vs. ERA-Interim

Time scales

Introduction

=> Use satellite gravimetry to evaluate climate models*

* regarding land water-storage related variables

Introduction

=> Use satellite gravimetry to evaluate climate models*

* regarding land water-storage related variables

Coupled climate models HafenCity Universität Hamburg No other observations **Atmosphere** (precipitation, Initialization temperature,...)! CO21 sun's energy greenhouse gas (GHG) D Forcing concentrations aerosols Ocean Coupler -Land land use change -Icons from freepik.com Climate variables (e.g. soil moisture) for ~250 yrs **Focus on trends! SSP** scenarios historical 1850 2100 **Annette Eicker NEROGRAV Spring School 2025**

68

HafenCity Universität Hamburg

Challenges:

Large uncertainty among models

69

1850

Initialization

Challenges:

Initialization

• Large uncertainty among models

Where do models agree on the (sign of) the trend?

=> "model consensus"

fraction of models agreeing on sign of trend

CMIP6 trend (model median)

Challenges:

Initialization

- Large uncertainty among models
 - Inter-annual variations are stochastic

CMIP6 trend (model median)

Challenges:

Initialization

- Large uncertainty among models
- Inter-annual variations are stochastic

Assessment of trends: CMIP vs. GRACE

GRACE trend

CMIP6 trend (model median)

Assessment of trends: CMIP vs. GRACE

GRACE trend

CMIP6 trend (model median)

Assessment of trends

(Eicker et al. in preparation)

Long-term trend

- 1. Simulate **GIA uncertainty** using an ensemble of 52 GIA models (Bagge et al. 2021)
 - different ice histories
 - different mantle viscosity profiles
- 2. Investigate influence on GRACE trend
- => Importance for, e.g. using GRACE for climate model evaluation.

GIA correction influences GRACE trend (even in regions not covered by ice)

(Eicker et al. 2024)

NEROGRAV Spring School 2025

Influence of GIA ensemble on TWS trend

Assessment of trends

⁽Eicker et al. in preparation)

Assessment of trends

* GIA model 3D_ICE-6G_1.0_s16 showed very good agreement with observed uplift rates

(Eicker et al. 2024)

Annette Eicker

NEROGRAV Spring School 2025

Climate change

Satellite gravimetry: an excellent tool for water cycle and climate monitoring.

- sensitive to water storage change under the Earth's surface
 - groundwater monitoring
 - potential for flood and drought early warning
- directly measures mass change
 - no ice density required, seperation of sea level components,...

83

Challenges:

- signal separation
- spatial resolution, leakage
- time series still rather short for climate studies

84

Climate change HafenCity Universität Interested in more climate applications from GRACE/-FO (and other data)? 3. ICCC Workshop **Geodesy for Climate Research** March 24-25, 2025, online https://iccc.iag-aig.org/iccc-workshops/ws25

85