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Overview

• From measurements to gravity field solution
− Least squares adjustment

• Residual analysis

• Weight matrix of instrument noise

• Background model noise
– Example: non-tidal AOD model

• Summary
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Measurements
• Range-rate data between the satellites
• Accelerometer data
• Star camera data
• …

Monthly gravity field of the Earth
• Spherical harmonics coefficients
• or Mascons
• or …

From measurements to gravity field solution
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From measurements to gravity field solution
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From measurements to gravity field solution

Fr
om

 L
ev

el
-1

B
 I

ns
tr

um
en

t 
D

at
a 

to
 L

ev
el

-2
 

S
ph

er
ic

al
 H

ar
m

on
ic

s 
(G

ru
be

r, 
TU

M
)



Spring School, 12 March 2025, Murböck: Stochastic Modeling 6

From measurements to gravity field solution
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Least squares adjustment
• Prediction of the observations (range rate data) by a model



Spring School, 12 March 2025, Murböck: Stochastic Modeling 8

Least squares adjustment
• Prediction of the observations (range rate data) by a model

Observations:
range rate
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Least squares adjustment
• Prediction of the observations (range rate data) by a model

Time
Satellite state

Gravity field parameters

Instrumental calibration
- Accelerometer drift
- ...

Physical model:
- Solution of a differential equation

(Orbit integration)
- non linear!

Observations:
range rate
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• Prediction of the observations (range rate data) by a model

• Linearization by a truncated Taylor series

Least squares adjustment
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• Prediction of the observations (range rate data) by a model

• Linearization by a truncated Taylor series

• Linear, overdetermined system of equations (in matrix form)

Least squares adjustment

500,000 
observations 

per month

15,000 Parameter 
+ Calibration + ...

Fully occupied matrix
(~ 100 GB)
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• Prediction of the observations (range rate data) by a model

• Linearization by a truncated Taylor series

• Linear, overdetermined system of equations (in matrix form)

• Solution by minimizing the weighted quadratic sum of residuals

• Solution

Least squares adjustment
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• Prediction of the observations (range rate data) by a model

• Linearization by a truncated Taylor series

• Linear, overdetermined system of equations (in matrix form)

• Solution by minimizing the weighted quadratic sum of residuals

• Solution

Least squares adjustment
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Least squares adjustment
• Almost every method for gravity field recovery is based on least squares adjustment

• This talk is only about the weight matrix P

No weight matrix Weight matrix
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Least squares adjustment

Range 
rates

Accelero-
meter

Atmosphere, 
ocean, tides
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Least squares adjustment
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Residual analysis
KBR Range Rate

Assumptions

• Pure random
• Normal distribution
• Stationary
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Residual analysis
• Assumption of a stationary noise

• Neighboring residuals are correlated:
Estimation of the covariance

• The covariance function can be expressed
by the amplitudes of a power spectrum (PSD)
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Residual analysis
Time series of residuals

Covariance function Power Spectral Density (PSD)

Fourier series
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Residual analysis

Range-rates:
Differentiation of measured ranges

Noise is amplified in the high frequencies

Accelerometer:
Integration of accelerations to range-

rates
Long-wavelength errors are amplified

(low frequencies)

Multiples of orbit frequency.
Geographic related errors?
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Weight matrix of instrument noise
• Estimation of the covariance function

• Assumption of a stationary noise process:
− Covariance matrix is a Toeplitz matrix
− Can be described by the covariance function

• Weight matrix
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Weight matrix of instrument noise

Solution Covariance function

Post-fit residuals

Weight matrix
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0. iteration
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0. iteration

Least squares
adjustment

Gaussian filter 350 km

First weight matrix
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0. iteration

Estimate new 
covariance matrix

Gaussian filter 350 km

Post-fit residuals
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0. iteration

Estimate new 
covariance matrix

Gaussian filter 350 km

Post-fit residuals
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0. iteration

Least squares
adjustment

Gaussian filter 350 km

New weight matrix
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1. iteration

Least squares
adjustment

Gaussian filter 350 km

New weight matrix
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1. iteration

Estimate new 
covariance matrix

Gaussian filter 350 km

Post-fit residuals
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1. iteration

Estimate new 
covariance matrix

Gaussian filter 350 km

Post-fit residuals
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1. iteration

Least squares
adjustment

Gaussian filter 350 km

New weight matrix
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2. iteration

Least squares
adjustment

Gaussian filter 350 km

New weight matrix
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2. iteration

Estimate new 
covariance matrix

Gaussian filter 350 km

Post-fit residuals
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2. iteration

Estimate new 
covariance matrix

Gaussian filter 350 km

Post-fit residuals
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2. iteration

Least squares
adjustment

Gaussian filter 350 km

New weight matrix
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3. iteration

Least squares
adjustment

Gaussian filter 350 km

New weight matrix



Spring School, 12 March 2025, Murböck: Stochastic Modeling 37

3. iteration
Gaussian filter 350 km

Estimate new 
covariance matrix

Post-fit residuals

No more 
changes
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Summary of the first part

• Iterative algorithm to determine the weight matrix in least squares adjustment
− Analysis of the post-fit residuals
− Arcwise optimized relative weighting using variance component estimation (VCE) [Koch (1999): Parameter estimation and 

hypothesis testing in linear models, Springer, doi.org/10.1007/978-3-662-03976-2]
− Ellmer (2018): Contributions to GRACE Gravity Field Recovery, doctoral thesis 2018, doi.org/10.3217/978-3-85125-646-8
− Murböck et al. (2023): In-Orbit Performance of the GRACE Accelerometers and Microwave Ranging Instrument, Remote 

Sens. 2023, 15(3), 563; https://doi.org/10.3390/rs15030563

• Assumption: Noise time series is stationary (along the orbit)
− This might be true for the instrument noise
− But not for backgound model errors 

Range rates Accelerometer Atmosphere, 
ocean, tides

http://dx.doi.org/10.3217/978-3-85125-646-8
https://doi.org/10.3390/rs15030563
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Background model noise

Assumption: stationary random process

Time series of vectors (SH coefficients), 26 years

Shihora et al. (2024): Accounting for residual errors in atmosphere–ocean 
background models applied in satellite gravimetry, J Geod, 98:27, 
doi.org/10.1007/s00190-024-01832-7

https://doi.org/10.1007/s00190-024-01832-7
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Background model noise

Assumption: stationary random process

Time series of vectors (SH coefficients), 26 years

Shihora et al. (2024): Accounting for residual errors in atmosphere–ocean 
background models applied in satellite gravimetry, Journal of Geodesy, 98:27, 
doi.org/10.1007/s00190-024-01832-7

Full covariance matrix of one month
(Block Toeplitz matrix)

Day 1

Day 2

Day 3

Day 31

https://doi.org/10.1007/s00190-024-01832-7
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Modeling the observation noise

Covariance matrix of the reduced observation vector

Stationary along orbit

Day 1

Day 2

Day 3

Day 31

Stationary at Earth surface

Variance propagation
(from spherical harmonics to range rates)
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Least squares adjustment

with

Problem:
Matrix is fully occupied,

2 TB!

• Observation model
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Least squares adjustment

with

and constraining these signals towards zero

Both models are equivalent as shown in:
Kvas & Mayer-Gürr (2019): GRACE gravity field recovery with background model 
uncertainties. J Geod 93, 2543–2552. doi.org/10.1007/s00190-019-01314-1

https://doi.org/10.1007/s00190-019-01314-1
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Background model noise

Stochastic modeling applied for ocean tide and 
non-tidal AOD models

Hauk et al. (2023). Satellite gravity field recovery 
using variance‐covariance information from ocean 
tide models. Earth and Space Science, 10(10), 
e2023EA003098. 
https://doi.org/10.1029/2023EA003098

Wilms et al. (2025). Optimized gravity field 
retrieval for the MAGICmission concept using
background model uncertainty information. J Geod
99.21. https://doi.org/10.1007/s00190-024-
01931-5

improves GRACE/GRACE-FO 
gravity fields by up to 20 %.

https://doi.org/10.1029/2023EA003098
https://doi.org/10.1007/s00190-024-01931-5
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Very short summary
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