Publications and Presentations
Publications
Abrykosov, Petro; Pail, Roland; Gruber, Thomas; Zahzam, Nassim; Bresson, Alexandre; Hardy, Emilie; Christophe, Bruno; Bidel, Yannick; Carraz, Olivier; Siemes, Christian: Impact of a novel hybrid accelerometer on satellite gravimetry performance. Advances in Space Research 63 (10), 2019, 3235 - 3248
Zahzam, Nassim; Christophe, Bruno; Lebat, Vincent; Hardy, Emilie; Huynh, Phuong-Anh; Marquet, Noémie; Blanchard, Cédric; Bidel, Yannick; Bresson, Alexandre; Abrykosov, Petro; Gruber, Thomas; Pail, Roland; Daras, Ilias; Carraz, Olivier: Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions. Remote Sensing 14(14), 2022, 3273
Presentations
Pail, R.; Hauk, M.: Science and user needs for observing global mass transport to understand global change and to benefit society. The present and future of Satellite Gravimetry, 2020
Pail, R.: Future Gravity Mission Concepts for Sustained Observation of Mass Transport in the Earth System. European Geosciences Union General Assembly, 2021
Pail, R.: Benefits from a quantum space gravimetry mission to meet the user needs. ESA Living Planet Symposium, 2022
Relevant papers and documents
Additional Constellation & Scientific Analysis of the Next Generation Gravity Mission Concept (ADDCON), ESA Contract No 4000118480/16/NL/FF/gp
Daras, I. (2016): Gravity field processing towards future LL-SST satellite missions, DGK Reihe C, Dissertationen, Heft Nr. 770, Verlag BAdW in Kommission beim Verlag C. H. Beck, ISSN 0065-5325, ISBN 978-3-7696-5182-9
Daras, I., Pail, R. (2017): Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions. Journal of Geophysical Research: Solid Earth, 122(9):7343-7362, doi: 10.1002/2017JB014250
Daras, I.; Pail, R.; Murböck, M.; Yi, W. (2015): Gravity field processing with enhanced numerical precision for LL-SST missions. J. Geod. 89 (2), 99-110. dx.doi.org/10.1007/s00190-014-0764-2.
Flechtner, F.; Neumayer, K.H.; Dahle, C.; Dobslaw, H.; Fagiolini, E.; Raimondo, J.C.; Günter, A. (2016): What can be expected from the GRACE-FO Laser Ranging Interferometer for Earth Science applications? Surv. Geophys., 37(2), pp. 453-470. dx.doi.org/10.1007/s10712-015-9338-y
Hauk, M., Pail, R. (2018): Treatment of Ocean Tide Aliasing in the context of a Next Generation Gravity Field Mission. Geophys. J. Int. 214(1): 345–365, doi: doi.org/10.1093/gji/ggy145
Hauk, M., Schlicht, A., Pail, R., Murböck, M. (2017): Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS). Advances in Space Research 59(8): 2032-2047, doi: 10.1016/j.asr.2017.01.028
Hauk, M.; Pail, R. (2019): Gravity field recovery by high-precision high-low inter-satellite links. Remote Sensing, 11(5), 537; doi.org/10.3390/rs11050537
Hauk, Markus (2020): Simulation studies for gravity field retrieval in the context of a next-generation gravity mission. Dissertation, TU Munich
Mission Requirements Document, Next Generation Gravity Mission as a Mass-change And Geosciences International Constellation (MAGIC) - A joint ESA/NASA double-pair mission based on NASA's MCDO and ESA's NGGM studies (2020). ESA-EOPSM-FMCC-MRD-3785
Pail R. et al., Observing Mass Transport to Understand Global Change and to Benefit Society: Science and User Needs – An international multi-disciplinary initiative for IUGG, Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Heft 320, ISBN 978-3-7696-8599-2, München, 2015
Pail, R., Bamber, J, Biancale, R., Bingham, R., Braitenberg, C., Eicker, A., Flechtner, F., Gruber, T. Güntner, A., Heinzel, G., Horwath, M, Longuevergne, L., Müller, J., Panet, I., Savenije, H., Seneviratne, S., Sneeuw, N., van Dam, T., Wouters, B. (2019a): Mass variation observing system by high low inter-satellite links (MOBILE) – a new concept for sustained observation of mass transport from space. Journal of Geodetic Science, Band 9(1): 48–58, doi: doi.org/10.1515/jogs-2019-0006.
Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., Wouters B. (2015): Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. Surveys in Geophysics, 36(6):743-772, Springer Netherlands, doi: 10.1007/s10712-015-9348-9
Pail, R., Yeh, H.-S, Feng, W., Hauk, M., Purkhauser, A., Wang, Ch., Zhong, M., Shen, Y., Chen, Q., Luo, Z., Zhou, H., Liu, B., Zhao, Y., Zou, X., Xu, X., Zhong, B., Haagmans, R., Xu, H. (2019b): Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise. Remote Sensing, 11(22), 2654, doi: doi.org/10.3390/rs11222654
Purkhauser, A., Pail, R. (2019): Next generation gravity missions: near-real time gravity field retrieval strategy. Geophys. J. Int., 17(2):1314–1333, doi.org/10.1093/gji/ggz084
Purkhauser, A., Siemes, C., Pail, R. (2019): Consistent quantification of the impact of key mission design parameters on the performance of next-generation gravity missions. Geophysical Journal International 221 (2), 1190-1210
Purkhauser, Anna Franziska (2020): Future Constellations for Near Real Time Gravity Processing. Dissertation, TU Munich, mediatum.ub.tum.de/doc/1543011/333203.pdf
Visser, P.N.A.M. Using the GOCE star trackers for validating he calibration of its accelerometers J. Geodesy, Vol. 92, pp. 833-846, 2018, doi.org/10.1007/s00190-017-1097-8
Visser, P.N.A.M., van den IJssel, J. Calibration and validation of individual GOCE accelerometers by precise orbit determination, J. Geodesy, Vol. 90, No. 1, pp. 1-13, 2016, doi.org/10.1007/s00190-015-0850-0
Visser, P.N.A.M., van den IJssel, J. GPS-based precise orbit determination of the very low Earth-orbiting gravity mission GOCE, J. Geodesy, Vol. 74, pp. 590-602, 2000, doi.org/10.1007/s001900000119
Wiese D N, Visser P, Nerem R S (2011) Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Advances in Space Research 48 (2011) 1094–1107. doi:10.1016/j.asr.2011.05.027